\(\mathcal{H}\)-Matrix Parallelisation

Ronald Kriemann

Max Planck Institute for Mathematics
in the
Sciences Leipzig

Winterschool on \(\mathcal{H}\)-Matrices
2008
Overview

1. Introduction

2. Technical Prerequisites

3. Matrix Construction

4. Preconditioning

5. Conclusion and Outlook
Overview

1 Introduction

2 Technical Prerequisites

3 Matrix Construction

4 Preconditioning

5 Conclusion and Outlook
Problem

- Matrix construction is very expensive for BEM problems,
- solving equation system often needs preconditioning, but \mathcal{H}-LU factorisation is also expensive.
Introduction

Problem
- Matrix construction is very expensive for BEM problems,
- solving equation system often needs preconditioning, but \mathcal{H}-LU factorisation is also expensive.

Goal
Exploit parallel capabilities of PCs or workstations to accelerate \mathcal{H}-arithmetics.
Problem

- Matrix construction is very expensive for BEM problems,
- solving equation system often needs preconditioning, but \mathcal{H}-LU factorisation is also expensive.

Goal
Exploit parallel capabilities of PCs or workstations to accelerate \mathcal{H}-arithmetics.

Conditions
- parallelise only for few processors,
- recycle existing algorithm,
- achieve high parallel speedup
Overview

1 Introduction

2 Technical Prerequisites

3 Matrix Construction

4 Preconditioning

5 Conclusion and Outlook
System Architecture

Workstations and small compute servers are usually systems with a shared memory, e.g. all p processors have direct access to the same memory:
System Architecture

Workstations and small compute servers are usually systems with a shared memory, e.g. all \(p \) processors have direct access to the same memory:

![Diagram showing shared memory access]

Consequences

- simplified programming because no communications involved,
- but protection of critical resources necessary, e.g. simultaneous access to the same memory position
Threads
The standard parallelisation tool on shared memory systems are threads, i.e. parallel computation paths in a program. All threads can read and write all memory used by the program.
Threads

The standard parallelisation tool on shared memory systems are threads, i.e. parallel computation paths in a program. All threads can read and write all memory used by the program. Each program has a **main thread**, e.g. the `main` function in a C program. Afterwards, new threads can be started, e.g:

```
program
```

![Diagram showing the main thread and parallel mode]
Technical Prerequisites

Threads
The standard parallelisation tool on shared memory systems are threads, i.e. parallel computation paths in a program. All threads can read and write all memory used by the program. Each program has a main thread, e.g. the main function in a C program. Afterwards, new threads can be started, e.g:

Also possible is nested parallelism: starting new threads from other threads.
Mutexes

A **mutex** is a tool for mutual exclusion of critical sections in a program. It either is **LOCKED** or **UNLOCKED**. Locking an already locked mutex blocks the thread until the mutex is unlocked by another thread.

Example: compute

\[A := A + \sum_{i=1}^{4} A_i \],

with matrices \(A \) and \(A_i \), \(i = 1, \ldots, 4 \).

On thread 1:

\[T_1 := A_1 + A_2; \]

lock mutex \(m \);

\[A := A + T_1; \]

unlock mutex \(m \);

On thread 2:

\[T_2 := A_3 + A_4; \]

lock mutex \(m \);

\[A := A + T_2; \]

unlock mutex \(m \);

with shared mutex \(m \).
Mutices

A mutex is a tool for mutual exclusion of critical sections in a program. It either is **LOCKED** or **UNLOCKED**. Locking an already locked mutex blocks the thread until the mutex is unlocked by another thread.

Example: compute $A := A + \sum_{i=1}^{4} A_i$, with matrices A and A_i, $i = 1, \ldots, 4$

On thread 1:

\[
T_1 := A_1 + A_2; \\
A := A + T_1;
\]

On thread 2:

\[
T_2 := A_3 + A_4; \\
A := A + T_2;
\]
Mutices

A mutex is a tool for mutual exclusion of critical sections in a program. It either is `LOCKED` or `UNLOCKED`.

Locking an already locked mutex blocks the thread until the mutex is unlocked by another thread.

Example: compute \(A := A + \sum_{i=1}^{4} A_i \), with matrices \(A \) and \(A_i, i = 1, \ldots, 4 \)

On thread 1:
\[
T_1 := A_1 + A_2;
\]
\[
\text{lock mutex } m;
\]
\[
A := A + T_1;
\]
\[
\text{unlock mutex } m;
\]

On thread 2:
\[
T_2 := A_3 + A_4;
\]
\[
\text{lock mutex } m;
\]
\[
A := A + T_2;
\]
\[
\text{unlock mutex } m;
\]

with shared mutex \(m \).
Thread Implementations

How to access threads in a program, e.g. how to start new threads and synchronise them via mutexes?
Thread Implementations

How to access threads in a program, e.g. how to start new threads and synchronise them via mutexes?

Widely used implementations:

- **POSIX threads:**
 - powerful, almost everywhere available
 - compliciate interface

- **OpenMP:**
 - simple interface
 - mainly developed for loop parallelisation, needs compiler support
Technical Prerequisites

Thread Implementations

How to access threads in a program, e.g. how to start new threads and synchronise them via mutexes?

Widely used implementations:

- **POSIX threads:**
 - powerful, almost everywhere available
 - complicate interface

- **OpenMP:**
 - simple interface
 - mainly developed for loop parallelisation, needs compiler support
Technical Prerequisites

OpenMP

Language enhancements for C/C++ and FORTRAN for thread creation, loop parallelisation and synchronisation.

Example for linear combination of vectors:

\[y := y + \alpha x \]

```c
#pragma omp parallel for
for (i = 0; i < n; i++)
    y[i] := y[i] + alpha * x[i];
```

At the `pragma` directive, threads are started. The loop is automatically parallelised and after finishing, all threads are synchronised. If no OpenMP support is available, the directive is ignored by the compiler.

OpenMP is supported by all major compilers: GNU, Intel, Sun, Microsoft but with varying degree, e.g. nested parallelism.
Technical Prerequisites

OpenMP

Language enhancements for C/C++ and FORTRAN for thread creation, loop parallelisation and synchronisation.

Example for linear combination of vectors: \(y := y + \alpha x \):

\[
\#pragma omp parallel for
\begin{align*}
\text{for } (i = 0; i < n; i++) \\
y[i] := y[i] + \text{alpha} \times x[i];
\end{align*}
\]

At the \texttt{pragma} directive \(p \) threads are started. The loop is automatically parallelised and after finishing, all threads are synchronised. If no OpenMP support is available, the directive is ignored by the compiler.
OpenMP

Language enhancements for C/C++ and FORTRAN for thread creation, loop parallelisation and synchronisation.

Example for linear combination of vectors: $y := y + \alpha x$:

\begin{verbatim}
#pragma omp parallel for
 for (i = 0; i < n; i++)
 y[i] := y[i] + alpha * x[i];
\end{verbatim}

At the \texttt{pragma} directive p threads are started. The loop is automatically parallelised and after finishing, all threads are synchronised. If no OpenMP support is available, the directive is ignored by the compiler.

OpenMP is supported by all major compilers: GNU, Intel, Sun, Microsoft but with varying degree, e.g. nested parallelism.
Other OpenMP Directives

#pragma omp parallel

Starts p threads executing the following code block.

#pragma omp critical

Provides mutual exclusion, e.g. mutexes, for the following code block.
Other OpenMP Directives

#pragma omp parallel

Starts p threads executing the following code block.

#pragma omp critical

Provides mutual exclusion, e.g. mutices, for the following code block.

OpenMP Functions and Types

For explicit mutices, the type `omp_lock_t` is defined by OpenMP with the functions

```c
// lock given mutex
void omp_set_lock ( omp_lock_t * mutex );
// unlock given mutex
void omp_unset_lock ( omp_lock_t * mutex );
```
Overview

1. Introduction
2. Technical Prerequisites
3. Matrix Construction
4. Preconditioning
5. Conclusion and Outlook
Let \mathcal{I} be an index set with $\# \mathcal{I} = n$, $T(\mathcal{I})$ a cluster tree over \mathcal{I} and $T(\mathcal{I} \times \mathcal{I})$ a block cluster tree over $\mathcal{I} \times \mathcal{I}$.

Sequential Algorithm without Hierarchy

Build matrix blocks only for leaves in block cluster tree:

\[
\text{for } (t, s) \in \mathcal{L}(T(\mathcal{I} \times \mathcal{I})) \text{ do } \\text{if } (t, s) \text{ is admissible then build low rank matrix; else build dense matrix; } \text{endfor;}
\]
Let \mathcal{I} be an index set with $\#\mathcal{I} = n$, $T(\mathcal{I})$ a cluster tree over \mathcal{I} and $T(\mathcal{I} \times \mathcal{I})$ a block cluster tree over $\mathcal{I} \times \mathcal{I}$.

Sequential Algorithm without Hierarchy

Build matrix blocks only for leaves in block cluster tree:

```latex
\begin{verbatim}
for \((t, s) \in \mathcal{L}(T(\mathcal{I} \times \mathcal{I}))\) do
    if \((t, s)\) is admissible then build low rank matrix;
    else build dense matrix;
endfor;
\end{verbatim}
```

Properties

- all matrix blocks can be built independently,
- $\#\mathcal{L}(T(\mathcal{I} \times \mathcal{I})) \gg p$, e.g. enough to do for each processor and no explicit scheduling necessary.
Parallel Algorithm without Hierarchy

Apply OpenMP parallelisation directly to loop:

```c
leaves = ... // list of leaves
#pragma omp parallel {
  while (! is_empty( leaves ) ) {
    // guard change of leaves set by mutex
    #pragma omp critical {
      cluster = head( leaves );
      leaves = tail( leaves );
    }

    if ( is_adm( cluster ) )
      M = build_lowrank( cluster );
    else
      M = build_dense( cluster );
  }
}
```
Matrix Construction

Parallel Algorithm without Hierarchy

Apply OpenMP parallelisation directly to loop:

```c
leaves = ... // list of leaves
#pragma omp parallel {
    while (! is_empty( leaves )) {
        // guard change of leaves set by mutex
        #pragma omp critical {
            cluster = head( leaves );
            leaves = tail( leaves );
        }

        if ( is_adm( cluster ) )
            M = build_lowrank( cluster );
        else
            M = build_dense( cluster );
    }
}
```

Building block matrices is cheap and can be done sequentially.
Numerical Experiments (Helmholtz DLP)

Speedup vs. No. of Processors for different processors: Opteron and Core2. The speedup follows the trend $S(p) = p$. The graph shows a linear relationship between speedup and the number of processors.
Overview

1. Introduction
2. Technical Prerequisites
3. Matrix Construction
4. Preconditioning
5. Conclusion and Outlook
We are looking for a good preconditioner for the linear equation system

\[Ax = y \]

where \(A \) is an \(\mathcal{H} \)-Matrix.

Good guess for a preconditioner: \(P = A^{-1} \). Therefore use \(\mathcal{H} \)-matrix inverse \(\tilde{P} = A^{-1} \).

For iterative schemes one only needs matrix vector multiplication, therefore \(\mathcal{H} \)-LU factorisation is sufficient for evaluating \(A^{-1} \) and cheaper to compute.
Preconditioning

Assume A has 2×2 block structure:

$$
\begin{pmatrix}
L_{11} & L_{21} \\
L_{21} & L_{22}
\end{pmatrix}
\cdot
\begin{pmatrix}
U_{11} & U_{12} \\
U_{12} & U_{22}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
$$

Sequential Algorithm

Solving the above system, one obtains:

$$
L_{11}U_{11} = A_{11}, \quad L_{11}U_{12} = A_{12},
$$

$$
L_{21}U_{11} = A_{21}, \quad L_{22}U_{22} = A'_{22}
$$

with

$$
A'_{22} = A_{22} - L_{21}U_{12}.
$$

This involves two recursive calls, two matrix solves and one multiplication (with addition).
Preconditioning

Matrix Solve
Again, assume 2×2 block structure and consider $BU = C$ with known C and upper triangular U, e.g. $L_{21}U_{11} = A_{21}$ from above.

$$
\begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix} \cdot
\begin{pmatrix}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{pmatrix} =
\begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}
$$

This leads to

$$
B_{11}U_{11} = C_{11}, \quad B_{12}U_{22} = C'_{12}, \quad B_{21}U_{11} = C_{21}, \quad B_{22}U_{22} = C'_{22}
$$

with

$$
C'_{12} = C_{12} - B_{11}U_{12} \quad \text{and} \quad C'_{22} = C_{22} - B_{21}U_{12}
$$

involving four recursions and two multiplications.
Preconditioning

\(\mathcal{H}\)-LU factorisation and matrix solve only involves recursive calls and multiplications. Therefore, parallelising the multiplications, parallelises the \(\mathcal{H}\)-LU factorisation.
Preconditioning

\(\mathcal{H} \)-LU factorisation and matrix solve only involves recursive calls and multiplications. Therefore, parallelising the multiplications, parallelises the \(\mathcal{H} \)-LU factorisation.

Parallel Matrix Multiplication

\[
C := \alpha AB + \beta C
\]

Sequential algorithm for a \(m \times m \) block matrix:

```c
void mul ( alpha, A, B, beta, C ) {
    if ( is_blocked( A ) && is_blocked( B ) &&
        is_blocked( C ) )
        for ( i = 0; i < m; i++ )
            for ( j = 0; j < m; j++ )
                for ( l = 0; l < m; l++ )
                    mul( alpha, A_il, B_lj, beta, C_ij );
    else
        C := alpha * A * B + beta * C;
}
```
Preconditioning

Parallel Matrix Multiplication
Collect all atomic multiplications into list and apply OpenMP parallelisation to list:

```c
void mul_sim ( A, B, C, list ) {
    if ( is_blocked( A ) && is_blocked( B ) && is_blocked( C ) )
        for ( i, j, l = 0; i, j, l < m; i++, j++, l++ )
            mul_sim( A_il, B_lj, C_ij, list );
    else
        append( list, { C, A, B } );
}
```

```c
void mul ( alpha, A, B, beta, C ) {
    mul_sim( A, B, C, list );
    #pragma omp parallel
    {
        while ( ! is_empty( list ) ) {
            #pragma omp critical
            {product = head( list ); list = tail( list );}
            T = alpha * product.A * product.B;
            omp_set_lock( mutex( product.C ) );
            // guard access to C
            product.C = beta * product.C + T;
            omp_unset_lock( mutex( product.C ) );
        }
    }
}
```
Parallel Matrix Multiplication

Collect all atomic multiplications into list and apply OpenMP parallelisation to list:

```c
void mul_sim ( A, B, C, list ) {
    if ( is_blocked( A ) && is_blocked( B ) && is_blocked( C ) )
        for ( i, j, l = 0; i, j, l < m; i++, j++, l++ )
            mul_sim( A_il, B_lj, C_ij, list );
    else
        append( list, { C, A, B } );
}

void mul ( alpha, A, B, beta, C ) {
    mul_sim( A, B, C, list );
    #pragma omp parallel
    {
        while ( ! is_empty( list ) ) {
            #pragma omp critical
            {
                product = head( list );
                list = tail( list );
            }

            T = alpha * product.A * product.B;
            omp_set_lock( mutex( product.C ) ); // guard access to C
            product.C = beta * product.C + T;
            omp_unset_lock( mutex( product.C ) );
        }
    }
}
```
Preconditioning

Improved Parallel Matrix Multiplication

Collect products per matrix to reduce collisions:

```c
void mul_sim2 ( A, B, C ) {
    if ( is_blocked( A ) && is_blocked( B ) && is_blocked( C ) )
        for ( i, j, l = 0; i, j, l < m; i++, j++, l++ )
            mul_sim2( A_il, B_lj, C_ij );
    else
        append( C.list, { A, B } );
}
```
Preconditioning

Improved Parallel Matrix Multiplication
Collect products per matrix to reduce collisions:

```c
void mul_sim2 ( A, B, C ) {
    if ( is_blocked( A ) && is_blocked( B ) && is_blocked( C ) )
        for ( i, j, l = 0; i, j, l < m; i++, j++, l++ )
            mul_sim2( A_il, B_lj, C_ij );
    else
        append( C.list, { A, B } );
}
```

Numerical Experiments (LU, Helmholtz DLP)
Preconditioning

Alternative preconditioning techniques:

- restrict to block diagonal format:
 - perfectly parallelisable,
 - decreasing approximation of A^{-1} when p is increased
Preconditioning

Alternative preconditioning techniques:

- restrict to **block diagonal** format:
 - perfectly parallelisable,
 - decreasing approximation of A^{-1} when p is increased,
- apply **nested dissection**:
 - almost perfectly parallelisable,
 - only works for sparse matrices (FEM).
Alternative preconditioning techniques:

- **restrict to block diagonal format:**
 - perfectly parallelisable,
 - decreasing approximation of A^{-1} when p is increased,

- **apply nested dissection:**
 - almost perfectly parallelisable,
 - only works for sparse matrices (FEM).

Block Diagonal Preconditioner

Successively remove off-diagonal blocks from \mathcal{H}-matrix with increasing number of processors:

$p = 1$
Alternative preconditioning techniques:

- restrict to block diagonal format:
 + perfectly parallelisable,
 - decreasing approximation of A^{-1} when p is increased,
- apply nested dissection:
 + almost perfectly parallelisable,
 - only works for sparse matrices (FEM).

Block Diagonal Preconditioner

Successively remove off-diagonal blocks from \mathcal{H}-matrix with increasing number of processors:

\[p = 1 \quad p = 2 \]
Alternative preconditioning techniques:

- restrict to block diagonal format:
 + perfectly parallelisable,
 - decreasing approximation of A^{-1} when p is increased,
- apply nested dissection:
 + almost perfectly parallelisable,
 - only works for sparse matrices (FEM).

Block Diagonal Preconditioner

Successively remove off-diagonal blocks from \mathcal{H}-matrix with increasing number of processors:
Preconditioning

Alternative preconditioning techniques:
- restrict to block diagonal format:
 + perfectly parallelisable,
 - decreasing approximation of \(A^{-1} \) when \(p \) is increased,
- apply nested dissection:
 + almost perfectly parallelisable,
 - only works for sparse matrices (FEM).

Block Diagonal Preconditioner

Successively remove off-diagonal blocks from \(\mathcal{H} \)-matrix with increasing number of processors:

\[
p = 1 \quad p = 2 \quad p = 4 \quad p = 8
\]
Preconditioning

Block Diagonal Preconditioner

Assume 2×2 block structure of all block matrices in given \mathcal{H}-matrix. Then, the algorithm for the parallel LU factorisation for block diagonal matrices is:

```c
void blockdiag_LU ( p, A ) {
    if ( p == 1 ) LU( A );
    else {
        #pragma omp parallel for num_threads(2)
        for ( i = 0; i < 2; i++ )
            blockdiag_LU( p/2, A_ii );
    } } }
```

The OpenMP option `num_threads(2)` ensures, that only two threads are started.

This approach requires support for **nested parallelism** in OpenMP implementation.
Preconditioning

Nested Dissection
Assume a finite element discretisation for a partial differential equation, e.g. with piecewise linear ansatz functions. Since the support of the basis functions is local, one can find a subset \(\Gamma \) of \(\mathcal{I} \), such that the remaining indices are decomposed into decoupled sets:

\[
\Omega \quad \Gamma \quad \Omega_0 \quad \Omega_1 \quad \mathcal{I} \times \mathcal{I}
\]
Preconditioning

Nested Dissection

Assume a finite element discretisation for a partial differential equation, e.g. with piecewise linear ansatz functions. Since the support of the basis functions is local, one can find a subset Γ of \mathcal{I}, such that the remaining indices are decomposed into decoupled sets:

\[\Omega = \Omega_0 \cup \Omega_1 \]

\[\mathcal{I} \times \mathcal{I} = \mathcal{I}_0 \times \mathcal{I}_0 \cup \mathcal{I}_0 \times \mathcal{I}_1 \cup \mathcal{I}_1 \times \mathcal{I}_0 \cup \mathcal{I}_1 \times \mathcal{I}_1 \]

Recursively apply this procedure to the created sub index sets.
Preconditioning

Nested Dissection
Assume a finite element discretisation for a partial differential equation, e.g. with piecewise linear ansatz functions. Since the support of the basis functions is local, one can find a subset Γ of \mathcal{I}, such that the remaining indices are decomposed into **decoupled** sets:

Recursively apply this procedure to the created sub index sets.
Nested Dissection
Assume a finite element discretisation for a partial differential equation, e.g., with piecewise linear ansatz functions. Since the support of the basis functions is local, one can find a subset Γ of \mathcal{I}, such that the remaining indices are decomposed into decoupled sets:

Recursively apply this procedure to the created sub index sets.
Preconditioning

Nested Dissection: LU factorisation

The L and U factors in a LU factorisation of A have the same structure as A:

$$
\begin{pmatrix}
L_{11} & L_{22} \\
L_{31} & L_{32} & L_{33}
\end{pmatrix} \cdot
\begin{pmatrix}
U_{11} & U_{13} \\
U_{22} & U_{23} \\
U_{33}
\end{pmatrix} =
\begin{pmatrix}
A_{11} & A_{13} \\
A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
$$

leading to

$$
L_{11}U_{11} = A_{11} \quad L_{22}U_{22} = A_{22} \\
L_{31}U_{11} = A_{31} \quad L_{32}U_{22} = A_{32} \\
L_{11}U_{13} = A_{13} \quad L_{22}U_{23} = A_{23}
$$

which can be handled independently and

$$
L_{33}U_{33} = A'_{33} \quad \text{with} \quad A'_{33} = A_{33} - L_{31}U_{13} - L_{32}U_{23}.
$$
Nested Dissection: LU factorisation

The L and U factors in a LU factorisation of A have the same structure as A:

\[
\begin{pmatrix}
L_{11} & L_{22} \\
L_{31} & L_{32} & L_{33}
\end{pmatrix}
\begin{pmatrix}
U_{11} & U_{13} \\
U_{22} & U_{23} \\
U_{33}
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{13} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
\]

leading to

\[
L_{11}U_{11} = A_{11} \\
L_{31}U_{11} = A_{31} \\
L_{11}U_{13} = A_{13}
\]

\[
L_{22}U_{22} = A_{22} \\
L_{32}U_{22} = A_{32} \\
L_{22}U_{23} = A_{23}
\]

which can be handled independently and

\[
L_{33}U_{33} = A'_{33} \quad \text{with} \quad A'_{33} = A_{33} - L_{31}U_{13} - L_{32}U_{23}.
\]

should be small to have small sequential part.
void nd_LU (p, A) {
 if (p == 1) LU(A);
 else {
 #pragma omp parallel for num_threads(2)
 for (i = 0; i < 2; i++) {
 nd_LU(p/2, A_ii);
 nd_solve_lower(p/2, A_3i, A_ii);
 nd_solve_upper(p/2, A_ii, A_i3);
 T_i = nd_mul(p/2, A_3i, A_i3);

 omp_set_lock(mutex(A_33));
 A_33 = A_33 - T_i;
 omp_unset_lock(mutex(A_33));
 }
 LU(A_33);
 }
}
Preconditioning

Nested Dissection: Numerical Experiments

Poisson problem in $\Omega = [0, 1]^3$

![Graph showing speedup vs. number of processors for different problem sizes](image)

- $n = 102^3$
- $n = 128^3$
- $S(p) = p$

H-Matrix Parallelisation
Nested Dissection: Remarks

- due to sparsity structure, nested dissection approach much faster than standard bisection even sequentially:
Nested Dissection: Remarks

• due to sparsity structure, nested dissection approach much faster than standard bisection even sequentially:

• computation of Γ and clustering \mathcal{I} can be done purely algebraically using graph partitioning for the sparse matrix.
Preconditioning

Nested Dissection: Remarks

- \mathcal{H}-matrices with nested dissection faster than optimised direct solvers:

![Graph showing performance comparison between H-ND, Pardiso, and UMFPACK solvers.](image)
Overview

1. Introduction
2. Technical Prerequisites
3. Matrix Construction
4. Preconditioning
5. Conclusion and Outlook
Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection).
Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection).
Parallelisable with same techniques:
- Matrix Addition: only set of leaves involved
- Matrix Vector Multiplication: again, with set of leaves,
 - private destination vector per thread; has to be summed up in parallel (axpy),
- Matrix Inversion:
 - like LU factorisation, uses parallel matrix multiplication,
 - much better speedup than LU factorisation.
For all algorithms, the achievable speedup is high compared to the implementation costs.
Alternative: H-Lib already implements all presented algorithms and much more.
Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection). Parallelisable with same techniques:

- **Matrix Addition**: only set of leaves involved,
- **Matrix Vector Multiplication**:
 - again, with set of leaves,
 - private destination vector per thread; has to be summed up in parallel (axpy)

For all algorithms, the achievable speedup is high compared to the implementation costs.

Alternative: HLib already implements all presented algorithms and much more.
Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection). Parallelisable with same techniques:

- **Matrix Addition**: only set of leaves involved,
- **Matrix Vector Multiplication**:
 - again, with set of leaves,
 - private destination vector per thread; has to be summed up in parallel (axpy),
- **Matrix Inversion**:
 - like LU factorisation, uses parallel matrix multiplication,
 - much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the implementation costs.

Alternative: H-Lib already implements all presented algorithms and much more.
Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection). Parallelisable with same techniques:

- **Matrix Addition**: only set of leaves involved,
- **Matrix Vector Multiplication**:
 - again, with set of leaves,
 - private destination vector per thread; has to be summed up in parallel (axpy),
- **Matrix Inversion**:
 - like LU factorisation, uses parallel matrix multiplication,
 - much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the implementation costs.
Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction) or use hierarchical parallelisation (LU with nested dissection). Parallelisable with same techniques:

- Matrix Addition: only set of leaves involved,
- Matrix Vector Multiplication:
 - again, with set of leaves,
 - private destination vector per thread; has to be summed up in parallel (axpy),
- Matrix Inversion:
 - like LU factorisation, uses parallel matrix multiplication,
 - much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the implementation costs.

Alternative: \mathcal{H}-Lib$^{\text{pro}}$ already implements all presented algorithms and much more.
R. Kriemann,
Parallele Algorithmen für Η-Matrizen,

R. Kriemann,
Parallel Η-Matrix Arithmetics on Shared Memory Systems,

M. Bebendorf and R. Kriemann,
Fast Parallel Solution of Boundary Integral Equations and Related Problems,

L. Grasedyck, R. Kriemann and S. Le Borne,
Domain Decomposition Based Η-LU Preconditioning,
submitted to “Numerische Mathematik”.

L. Grasedyck, R. Kriemann and S. Le Borne,
Parallel Black Box Η-LU Preconditioning for Elliptic Boundary Value Problems,
to appear in “Computing and Visualization in Science”.

H-Matrix Parallelisation