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Threads
On a shared memory architecture, programs are executed as processes with their
own

• address space,
• file handles,
• . . .
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Processes may not directly access data in the address space of other processes.

Communication between different processes needs extra tools, e.g. via pipes,
files, sockets or IPC (see Stevens 1998).

In a process execution starts with the main function and
afterwards follows the control flow as defined by the
programmer.
A normal process will have a single computation path.

process
main () {

f1()
f2()
· · ·

}
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Threads
Threads provide a mechanism to have several computation paths within a single
process.

process
main () {

}

t1 = create_thread( f1() )
f1 () {

}
f2()
join_thread( t1 )
t3 = create_thread( f3() )

f3 () {

}

t4 = create_thread( f4() )

f4 () {

}

join_thread( t3 )
join_thread( t4 )
· · ·

At any time during the runtime of a process, new threads may be spawned.
Synchronising with the end of a thread is called joining .

It is also possible to start threads from within other created threads.
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Threads
All threads have a direct access to the address space of the process.

Stack Stack Stack Stack

Thread Thread Thread Thread· · ·

Process Address Space

All communication between different threads may be accomplished by changing
data in the common address space.

Furthermore, each thread executes a function which may have local variables
stored on the stack. Such data is considered thread-local and must not be
accessed by other threads.
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Threads
As an example, the following threads execute functions with local variables
x1, x2 in function f1 and y1, y2 in function f2.

void f1 () {
double x1, x2;
...

}

void f2 () {
double y1, y2;
...

}

main () {

}

t1 = create_thread( f1() )
t2 = create_thread( f1() )
t3 = create_thread( f2() )

· · ·

x1, x2

f1 () {

}

x1, x2

f1 () {

}

y1, y2

f2 () {

}

These variables are local to the thread, the function is executed in.

As the variables are allocated per function call , the same function executed in
different threads will create different variables.

Kriemann, »Introduction to Parallel Programming« 6



Mutual Exclusion
Consider the following algorithm for computing the sum b =

∑3
i=0 ai.

double a[4] = { 1, 2, 3, 4 };
double b = 0;
int main () {

thread_t t1 = create_thread( f1() );
thread_t t2 = create_thread( f2() );
join_thread( t1 ); join_thread( t2 );

}

1 void f1 () {
2 double t = a[0]+a[1];
3 b = b + t;
4 }

void f2 () {
double t = a[2]+a[3];
b = b + t;

}

On the level of processor instructions, line 3 consists of several steps:

1 load data from memory position of b,
2 compute b + t,
3 store the result at memory position of b

Both threads may simultaneously execute these instructions, yielding different
results depending on which threads execute which instruction first. The final
value of b may either be 3, 7 or 10, depending on the scheduling of the threads.

In contrast to this, the local computation of t is uncritical, since only
thread-local data is changed.

Kriemann, »Introduction to Parallel Programming« 7



Mutual Exclusion
Critical Section
The update of the variable b in both functions is called a critical section.
At any time at most one thread must be inside a critical section. Otherwise, the
result of the computation is undefined.

Mutex
To enable the mutual exclusion of several threads in critical sections, mutex
locks (mutexes) are provided by the corresponding programming interfaces.
A mutex is always in one of two states, locked or unlocked :

locked: If a thread tries to lock an already locked mutex, the thread will block
further computation until the mutex is unlocked.

unlocked: Any thread may lock the mutex. If multiple threads try to lock a
mutex simultaneously, only one thread will succeed and all others will
block.

Furthermore, if multiple threads will block on a locked mutex, unlocking the
mutex will always unblock only a single thread.

Kriemann, »Introduction to Parallel Programming« 8



Mutual Exclusion
Critical Section
The update of the variable b in both functions is called a critical section.
At any time at most one thread must be inside a critical section. Otherwise, the
result of the computation is undefined.

Mutex
To enable the mutual exclusion of several threads in critical sections, mutex
locks (mutexes) are provided by the corresponding programming interfaces.
A mutex is always in one of two states, locked or unlocked :

locked: If a thread tries to lock an already locked mutex, the thread will block
further computation until the mutex is unlocked.

unlocked: Any thread may lock the mutex. If multiple threads try to lock a
mutex simultaneously, only one thread will succeed and all others will
block.

Furthermore, if multiple threads will block on a locked mutex, unlocking the
mutex will always unblock only a single thread.

Kriemann, »Introduction to Parallel Programming« 8



Mutual Exclusion
To protect critical sections with mutexes, a shared mutex is locked before the
critical section (function lock()) and unlocked afterwards (function unlock()):
double a[4] = { 1, 2, 3, 4 };
double b = 0;

int main () {
mutex_t mutex;
thread_t t1 = create_thread( f1( mutex ) );
thread_t t2 = create_thread( f2( mutex ) );
join_thread( t1 ); join_thread( t2 );

}

void f1 ( mutex_t & mutex ) {
double t = a[0]+a[1];

lock( mutex );
b = b + t;
unlock( mutex );

}

void f2 ( mutex_t & mutex ) {
double t = a[2]+a[3];

lock( mutex );
b = b + t;
unlock( mutex );

}

Most mutex implementations will also provide a function trylock(), which
either blocks an unlocked mutex or immediately returns with a corresponding
return code if the mutex is already locked. Above all, the thread will not block.
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Thread Scheduling
The mapping of threads to physical processors (or processor cores) is either
performed by the operating system or by the software library providing the
thread functionality.

Which thread is assigned to which processor depends on many factors, the main
two being

• how many other processes or threads are running and
• topology of the processor configuration (cores in same processor),

Especially the number of other threads in the system is constantly changing.
Hence, the mapping also changes constantly.

Furthermore, the times at which a thread is assigned CPU cycles are completely
undeterministic.

Run 2

Run 1
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Thread Scheduling
Race Condition
If the outcome of a multi-threaded program changes with the scheduling of
threads, a race condition is present.

Race conditions usually exist because of shared data and missing control of
critical regions.
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Thread Interfaces
Threads can be accessed by different programming interfaces, e.g.:

• POSIX Threads,
• C++ Threads,
• OpenMP or
• Threading Building Blocks

Furthermore, many software libraries will also provide an interface for threads,
usually based on one of the above frameworks.

They provide a different level of abstraction from the underlying thread
implementation of the operating system.

Beside basic thread handling, e.g. creation and joining, functions for mutexes and
mechanisms to alter thread scheduling are usually part of the thread interface.

Kriemann, »Introduction to Parallel Programming« 12



POSIX Threads
Thread Interfaces

The most widely used thread interface are POSIX threads or Pthreads.

Pthreads are designed to give the programmer almost full control over all aspects
of threads, e.g. thread creation or thread scheduling, using a low-level interface,
with a complex set of functions (see Butenhof 1997).
#include <pthread.h>

double a[4] = { 1, 2, 3, 4 };
double b = 0;

void ∗ f1 ( void ∗ data ) {
pthread_mutex_t ∗ mutex = (pthread_mutex_t ∗) data;
double t = a[0]+a[1];
pthread_mutex_lock( mutex );
b = b + t;
pthread_mutex_unlock( mutex );

}
void ∗ f2 ( void ∗ data ) { ... }

int main () {
pthread_t t1, t2;
pthread_attr_t attr;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_attr_init( & attr );
pthread_create( & t1, & attr, f1, (void ∗) & mutex );
pthread_create( & t2, & attr, f2, (void ∗) & mutex );
pthread_attr_destroy( & attr );
pthread_join( t1, NULL );
pthread_join( t2, NULL );

}

Kriemann, »Introduction to Parallel Programming« 13



C++ Threads
Thread Interfaces

With C++11, C++ provides data types for threads and mutexes, enabling
simplified programming of thread parallel applications.
#include <thread>
#include <mutex>

double a[4] = { 1, 2, 3, 4 };
double b = 0;

void f1 ( std::mutex ∗ mutex ) {
double t = a[0]+a[1];

mutex−>lock();
b = b + t;
mutex−>unlock();

}
void f2 ( std::mutex ∗ mutex ) { ... }

int main () {
std::mutex mutex;
std::thread t1( f1, & mutex );
std::thread t2( f2, & mutex );

t1.join();
t2.join();

}

C++ threads are best suited for simple thread programming, without the need for
special scheduling or task handling. A typical example is a special I/O thread
handling network communication.

Kriemann, »Introduction to Parallel Programming« 14



OpenMP
Thread Interfaces

OpenMP is a language extension to C, C++ and Fortran, providing special
pragmas for handling parallel sections of a program.
double a[4] = { 1, 2, 3, 4 };
double b = 0;

int main () {
#pragma omp parallel
{
#pragma omp sections reduction (+:b)
{
#pragma omp section
{
double t = a[0] + a[1];
b = b + t;

}
#pragma omp section
{
double t = a[2] + a[3];
b = b + t;

} } } }

OpenMP also provides automatic task definition and scheduling when handling
loops. It is even possible to map code sections to special targets, e.g. external
accelerator cards.

When converting sequential to parallel programs, OpenMP often yields a good
parallel efficiency with only a few changes to the source code and preserving
most of the code structure.

Kriemann, »Introduction to Parallel Programming« 15



Threading Building Blocks
Thread Interfaces

Threading Building Blocks (TBB) is a C++ software library, which differs from
the previous interfaces as it works with tasks instead of threads.

The underlying principle of the TBB framework is, that the decomposition of the
computation into small but many tasks yields a better utilisation of the parallel
resources than having just a few threads.
#include <tbb/task.h>

double a[4] = { 1, 2, 3, 4 };
double b = 0;

struct sum1_t : public tbb::task {
double t = 0;
tbb::task ∗ execute() {
t = a[0] + a[1];
return nullptr;

}
};
struct sum2_t : public tbb::task { ... }

int main () {
sum1_t & t1 = ∗new( tbb::task::allocate_root() ) sum1_t();
sum2_t & t2 = ∗new( tbb::task::allocate_root() ) sum2_t();

tbb::task::spawn_root_and_wait( t1 );
tbb::task::spawn_root_and_wait( t2 );
b = t1.t + t2.t;

}

TBB also implements parallel containers, e.g. vectors, various forms of mutexes
and a special memory allocator.

Kriemann, »Introduction to Parallel Programming« 16



Side Effects of Hardware and Software
Certain features of parallel computers have a large influence on the behaviour of
parallel programs.

This behaviour is often not directly visible to the programmer, especially, since
all communication between different processors are performed using shared
memory and the hardware providing the shared memory.

Such problems appear either directly due to hardware, especially memory caches,
e.g.

• False Sharing and
• Atomic Operations

or indirectly by software, e.g.

• Thread Scheduling or
• Memory Allocation.

The most notable software in this context is of course the Operating System,
providing access to the hardware.

Kriemann, »Introduction to Parallel Programming« 17



Cache Coherence
Side Effects of Hardware and Software

A typical parallel computer today consists of one or more processors with several
cores, each having

• first level cache (instruction and data) in the order of 16kB to 128kB,
• second level cache of size 256kB up to some MB,
• optional third level cache up to several MB capacity

The 2nd and 3rd level caches may be shared between different cores.

L3 (15MB)

L2 (256kB)

L1 (32kB)

Core

L2 (256kB)

L1 (32kB)

Core

L2 (256kB)

L1 (32kB)

Core

L2 (256kB)

L1 (32kB)

Core

L2 (256kB)

L1 (32kB)

Core

L2 (256kB)

L1 (32kB)

Core

Cache configuration of an Intel Xeon E5-2640
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Cache Coherence
Side Effects of Hardware and Software

Each cache may have its own copy of data from the main memory. If the data is
changed in one place, all copies of that data have to be updated.

Cache coherence exists, if all caches contain the most recent version of some
shared data from the main memory.

Various algorithm are used to maintain cache coherence in modern processors.

A typical cache coherence protocol will

• listen for memory accesses of all other cores,
• if a write to a locally cached memory position is detected, invalidates the
local cache entry,

• which enforces a reload of the data from memory.

Kriemann, »Introduction to Parallel Programming« 19



False Sharing
Side Effects of Hardware and Software

Processors will not map individual bytes into local caches, but handle memory in
segments of size 64–128 bytes, so called cache lines.

If a single byte has changed in memory, not only the entry of this single data
item is invalidated in the cache but the whole cache line, leading to a memory
read of size 64–128 bytes.

Consider the following example where eight threads will compute a separate
coefficient of an array.

int main () {
double x[8];
std::vector< std::thread > threads( 8 );

for ( int i = 0; i < 8; ++i )
threads[i] = std::thread( f, i, x );

...
}

void f ( int tid, double ∗ x ) {
do {
x[tid] = compute_update();

} while ( ... );
}

Since each thread will update a private entry of the array x, no shared data and
no critical region exist.

Kriemann, »Introduction to Parallel Programming« 20



False Sharing
Side Effects of Hardware and Software

Unfortunately, x is 64 bytes long (8·sizeof(double) = 8 · 8), and hence, may
occupy an entire cache line. Therefore, all processors will hold the complete
content of x in their local caches:

Memory

· · ·

x

x[0]=... x[1]=... x[2]=... x[p-1]=...

If thread i updates the content of the coefficient xi, this invalidates the cache
line of xi and therefore x in all other processors.

Hence, for each update of a coefficient of x, all processors need to load the
memory corresponding to the whole array x into the local caches.

The behavious is known as false sharing and is an example of a hidden task
interaction in multi-threaded programs.

Kriemann, »Introduction to Parallel Programming« 21



False Sharing
Side Effects of Hardware and Software

If the updates to x are fast enough, the memory loads will dominate the
computation and severly limit the parallel efficiency. In extreme cases, the
parallel runtime may be higher than the sequential runtime!

In the following example, each thread will updated its local coefficient of x via
void f ( int tid, double ∗ x ) {

for ( size_t i = 0; i < 10000000; ++i )
x[tid] += std::sin( double(i) );

}

The resulting runtime grows linear with p!

2 4 6 8 10 12
# of cores

R
un

tim
e

False Sharing
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False Sharing
Side Effects of Hardware and Software

If instead the update is applied to a thread-private variable:
void f ( int tid, double ∗ x ) {

double t = 0.0;

for ( size_t i = 0; i < 10000000; ++i )
t += std::sin( double(i) );

x[tid] += t;
}

the runtime stays constant.
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# of cores
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tim
e

False Sharing
No False Sharing
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False Sharing
Side Effects of Hardware and Software

Even for a larger data set, false sharing may be an issue at the per-task data
boundaries:

If the computation is concentrated at these boundaries, memory loads will be
induced in the corresponding processor handling the neighboured task.
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Atomic
Side Effects of Hardware and Software

Normally, even updates such as
++x;

or
y = y + x;

of variables of an elementary data type, e.g. int or double will require several
CPU instructions, e.g. load, arithmetic and store commands. These commands
may be interrupted by other threads, potentially leading to a race condition.

However, a special set of CPU instructions will provide atomic, indivisible
operations, which perform load, arithmetic and store in one step.

Remark
In C++, atomic operations are provided by the atomic class.
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Atomic
Side Effects of Hardware and Software

Using atomic instructions, the program

void f1 ( std::atomic< double > ∗ x ) {
∗x += 1;

}

void f2 ( std::atomic< double > ∗ x ) {
∗x += 2;

}

int main () {
std::atomic< double > x = 0.0;
std::thread t1( f1, & x );
std::thread t2( f2, & x );

t1.join(); t2.join();
}

will always yield the same output, although no mutex is used.

Remark
Mutexes itself are based on such atomic instructions.

Since atomic instructions directly change the main memory, the cost for
changing such a variable is much higher than for normal operations.

Furthermore, if other processors share the atomic variable, their cache entry will
be invalidated by the atomic instruction, enforcing a reload from memory.
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Atomic
Side Effects of Hardware and Software

An example for the usage of atomics is a counter for the number of certain
operations in a program:
void worker ( std::atomic< size_t > ∗ counter ) {

do {
perform_work();
(*counter)++;

} while ( ! finished );
}

int main () {
std::atomic< size_t > counter( 0 );
std::vector< std::thread > threads( p );

for ( int i = 0; i < p; ++i )
threads[i] = std::thread( worker, & counter );

for ( auto & t : threads )
t.join();

}

Here, the atomic counter may pose a critical bottleneck if the actual work in
perform_work is small.

In such a case, the main work of the program consists of cache updates of all
processors with the content of the counter variable. The behaviour of the
runtime is then identical to the false sharing case, e.g. limited speedup or even
speed down.
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Atomic
Side Effects of Hardware and Software

In the following example, the work per thread stays constant, only the (chunk)
size of the work data changes. The shared atomic variable will be used to count
the iterations. All times are multiples of the corresponding sequential runtime.
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The larger the chunk size, the less effect the atomic operations have. But
especially for small work per thread, the computation is dominated by memory
loads and has a significantly larger runtime than the sequential implementation.
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the iterations. All times are multiples of the corresponding sequential runtime.

5 10 20 40 80 160 320 640 1280 2560 5120

Chunk Size

2

5

10

20

40

R
e
la

ti
v
e
 T

im
e

p = 2
p = 4
p = 6
p = 8
p = 10
p = 12

(with atomic counter)

5 10 20 40 80 160 320 640 1280 2560 5120

Chunk Size

2

5

10

20

40

R
e
la

ti
v
e
 T

im
e

p = 2
p = 4
p = 6
p = 8
p = 10
p = 12

(without atomic counter)

The larger the chunk size, the less effect the atomic operations have. But
especially for small work per thread, the computation is dominated by memory
loads and has a significantly larger runtime than the sequential implementation.
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Thread Scheduling
Side Effects of Hardware and Software

A typical hardware configuration of a compute server consists of two processors,
each having several cores:
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For a multi-threaded program it may have a severe impact on the runtime if all
threads will be mapped to cores of the same processor with a joined L3 cache
(high communication speed) or if the threads are mapped to different processors
(larger cache per thread).
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Thread Scheduling
Side Effects of Hardware and Software

Although the performance difference will be based on properties of the hardware,
the actual mapping of the threads will be defined by software.

By default, thread scheduling is handled by the scheduler of the operating
system. A scheduler is responsible for

• mapping threads to processors and
• assigning slices of per processor runtime to threads.

In the standard case, the operating system is allowed to schedule a thread to any
processor.

Although, knowledge of the underlying hardware structure will influence
scheduling to some degree, a thread may be mapped to any processor and this
mapping may vary during the runtime of the thread.

This is especially true for multiple threads of a single process.

However, for many thread-parallel programs, the OS scheduler will provide a
reasonable scheduling, yielding close to optimal performance.
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Thread Scheduling
Side Effects of Hardware and Software

Control of the scheduling by the programmer is possible using processor affinity
functions of the OS.

Processor Affinity
Each thread has a mask defining at which processor it may be be executed, the
CPU affinity mask.
With it, the set of processors for a specific thread may be limited to cores of a
single physical processor or to separate processors.

Example: Binding Thread to CPU
Under Linux, the CPU affinity mask may be controlled using the
sched_setaffinity function. The following function will bind the calling
thread to the current CPU executing the thread:
void bind_to_current_cpu () {

int cpu = sched_getcpu(); // get current CPU
cpu_set_t cset;

CPU_ZERO( & cset ); // reset CPU set
CPU_SET( cpu, & cset ); // set current CPU only
sched_setaffinity( 0, sizeof(cset), & cset );

}
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Memory Allocation
Side Effects of Hardware and Software

Especially on NUMA systems the actual position of the allocated memory of a
program in the global memory has a direct influence on the performance of the
program, although local caches will often hide different memory speed.

There are different reasons for threads accessing non-local memory, e.g.

• remapping of a thread to a different processor,
• moving data handling in the program from one thread to another,
• the memory allocation routine, e.g. malloc.
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Memory Allocation
Side Effects of Hardware and Software

Often data is allocated in one thread and used for computations in another
thread:

void f1 ( std::vector< double > ∗ x ) {
x−>resize( n ); // allocate memory
initialize( x );

}

void f2 ( std::vector< double > ∗ x ) {
compute_with( x );

}

int main () {
std::vector< double > x;
std::thread t1, t2;

t1 = std::thread( f1, & x );
t1.join();

t2 = std::thread( f2, & x );
t2.join();

}

Depending on the processor mapping of both threads, the second thread may
work with remote memory and hence, has sub-optimal memory access.
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Memory Allocation
Side Effects of Hardware and Software

Furthermore, memory allocation itself has several side-effects in multi-threaded
programs, e.g.

Performance: Can the memory allocator handle several memory
requests simultaneously?

Memory Consumption: How does the memory consumption grow with the
number of threads?

Example: Solaris
The default malloc in Solaris used to have a global mutex to guard the memory
allocation routine, blocking all but one thread trying to allocate memory.
However, the default malloc for multi-threaded application in Solaris led to a
massive inrease of the memory consumption of parallel programs.

The standard memory allocator in Linux (see PTmalloc) handles simultaneous
memory requests in parallel and has a modest increase in memory consumption
when using multiple threads. Nevertheless, it may lead to non-local memory
accesses.
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Memory Allocation
Side Effects of Hardware and Software

The Linux malloc separates memory request from different threads by using
several heaps, each providing their own memory management. The general
algorithm is:
void ∗ malloc ( size_t n ) {

heap_t ∗ work_heap = NULL;

if ( private_heap( thread ) != NULL ) { // try to use thread−private heap
if ( ! is_locked( private_heap( thread ) ) ) {
lock( private_heap( thread ) );
work_heap = private_heap( thread );

}
}

work_heap = get_and_lock_unused_heap(); // try to use unused heap of another thread

if ( work_heap == NULL ) {
work_heap = allocate_heap(); // allocate new heap
lock( work_heap );

}

void ∗ p = allocate_from( work_heap, n );

set_private_heap( thread, work_heap );

return p;
}

This algorithm creates p′ ≤ p heaps, where p′ is the maximal number of
concurrent memory requests and p the number of threads, respectively.
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Memory Allocation
Side Effects of Hardware and Software

By design, several threads may share the same heap and hence, memory requests
may not always be served from local memory.

Furthermore, heaps may be moved between threads, e.g. if the private heap is in
use by another thread, a currently unused heap from another thread is used.

Alternative: TBB Malloc
An alternative memory allocator is provided by the Threading Building Blocks.
There, heaps and threads are tightly coupled without any sharing. Furthermore,
the TBB malloc has also several optimisations for fast multi-threaded memory
allocation.
To use TBB malloc, just link with the corresponding library:

> icpc -tbb -O2 main.cc -ltbbmalloc
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Rules For Thread-Parallel Programming
Side Effects of Hardware and Software

Critical rules, that should always be followed in thread-parallel programs are:

1 Avoid False Sharing by separating shared data or use thread-private data.
2 Sparsely use atomic variables.

The following rules will often only have a minor effect on the parallel
performance but may be critical for special algorithms:

3 Bind threads to processors depending on the data exchange pattern.
4 Keep allocated memory local to threads.
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