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Introduction



Parallel Systems

We consider shared-memory systems, i.e. computers with several
CPUs all accessing the same memory.
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We consider shared-memory systems, i.e. computers with several
CPUs all accessing the same memory.
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Memory

Having a single address space for all processors, simplifies parallel
programming because inter-process communication is free.

Nowadays, each CPU consists of several compute cores. Multi-core
CPUs have 8-16 cores, e.g. Intel Xeon or AMD Opteron CPUs,
whereas many-core CPUs have 64 or more cores, e.g. Intel XeonPhi.

The main problem on such systems is to keep all cores busy.



Parallel Systems

If cores are idle during the execution of an algorithm, the parallel
speedup will deteriorate very rapidly.

The reason is Amdahl’s Law: the influence of the sequential part on
the speedup:
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If cores are idle during the execution of an algorithm, the parallel
speedup will deteriorate very rapidly.
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Parallel Systems

If cores are idle during the execution of an algorithm, the parallel
speedup will deteriorate very rapidly.

The reason is Amdahl’s Law: the influence of the sequential part on
the speedup:
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Sources of idleness: sequential code, overhead, inefficiencies.
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Tasks

An algorithm typically consists of many individual operations, e.g.
each update of y; in the dense matrix-vector multiplication

for i=0,...,.n—1 do
for j=0,....n—1 do
Yi = Yi + Aijaj;



Tasks

An algorithm typically consists of many individual operations, e.g.
each update of y; in the dense matrix-vector multiplication

for i=0,...,.n—1 do
for j=0,....n—1 do
Yi = Yi + Aijaj;

In a parallel algorithm, an atomic set of operations, which is
executed by a single processor is called a task.

Designing algorithms by concentrating on tasks can help to reduce
idle times on many-core systems.



Tasks

An algorithm can be implemented with a different task granularity:

for i=0,....,n—1 do
for 7=0,....,n—1 do
task // One task per matrix entry
Yi = Yi + Aijazy;

for i=0,...,.n—1 do
task // One task per row
for j=0,...,n—1 do
Yi = Yi + Aijzy;

If a task is too small, too much overhead due to task management
may occur.

If task granularity is too large, too few tasks may result, leaving
processors idle.




Tasks

Often, between different tasks dependencies exists, e.g. the result of
one task is the input of another task:

procedure DoTPRODUCT(2, ¥, 1, j)
if =7 then
task
return xz; - y;;
else
task
do := DoTPRODUCT(2,¥,1, (i + j)/2 — 1);
dy ;= DoTPrRODUCT(Z, ¥, (i +j)/2,7);
return dy + dq;

Here, the computation of the sub intervals has to finish before
computing the final result.




Tasks

To achieve an optimal parallel speedup, the task granularity and the
execution order of all tasks need to be optimal for a specific
computer system.

Various factors are to consider for an optimal granularity and
execution order: costs of tasks, number of processors, processor
layout, memory hierarchy, etc..

Often, some of these factors are unknown or very specific to a
computer system.



Tasks

To achieve an optimal parallel speedup, the task granularity and the
execution order of all tasks need to be optimal for a specific
computer system.

Various factors are to consider for an optimal granularity and
execution order: costs of tasks, number of processors, processor
layout, memory hierarchy, etc..

Often, some of these factors are unknown or very specific to a
computer system.

Fortunately, there is software available, which may be used to

= simplify task definition and
= optimise execution order.

However, for this, algorithm design has to be changed to be

task-based
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Let I be an index set, T'(I) a (binary) H-tree over I and
T =T(I xI)aHx-tree over T'(I) with L(T') being the set of
leaves of T

The basic algorithm for H-matrix construction is

procedure MATRIXCONSTRUCT(T)
for all be L(T) do

if b is admissible then
build low-rank matrix;
else
build dense matrix;



H-Matrix Construction

Let I be an index set, T'(I) a (binary) H-tree over I and
T =T(I xI)aHx-tree over T'(I) with L(T') being the set of
leaves of T

The basic algorithm for H-matrix construction is

procedure MATRIXCONSTRUCT(T)
for all be L(T) do
task
if b is admissible then
build low-rank matrix;
else
build dense matrix;

The construction of each leaf in T' defines a new task.



H-Matrix Construction

The main properties of
procedure MATRIXCONSTRUCT(T)
for all b L(T) do

task
build dense/low-rank matrix for b;

are

= much more tasks (#£(7")) than processors and

= construction of a block does not depend on other blocks.




H-Matrix Construction

The main properties of
procedure MATRIXCONSTRUCT(T)
#pragma omp parallel for /] loop-parallelisation in OpenMP
for all b L(T) do // each b on a different p

build dense/low-rank matrix for b;

are

= much more tasks (#£(7")) than processors and

= construction of a block does not depend on other blocks.

With this, a simple loop-parallelisation will result in an optimal
parallel speedup.




‘H-Matrix Construction with Coarsening

When coarsening is added to matrix construction, the algorithm is
implemented via recursion, creating dependencies between tasks:

procedure MATRIXCONSTRUCT(b € T')
if be L(T) then
build dense/low-rank matrix for b;
else
for all v’ € S(b) do
MATRIXCONSTRUCT(b');

coarsen matrix for b;

The coarsening may be performed only after all sub blocks have
been created!



‘H-Matrix Construction with Coarsening

When coarsening is added to matrix construction, the algorithm is
implemented via recursion, creating dependencies between tasks:

procedure MATRIXCONSTRUCT(b € T')
if be L(T) then
build dense/low-rank matrix for b;
else
for all v’ € S(b) do
MATRIXCONSTRUCT(b');

coarsen matrix for b;

The coarsening may be performed only after all sub blocks have
been created!
Properties:

= still much more tasks (#7°) than processors and
= tasks are not independent (dependency follows hierarchy).



‘H-Matrix Construction with Coarsening

A parallel version of MATRIXCONSTRUCT with simple
loop-parallelisation:

procedure MATRIXCONSTRUCT(b € T))
if be L(T) then
build dense/low-rank matrix for b;
else
#£pragma omp parallel for
for all b’ € S(b) do
MATRIXCONSTRUCT(V');

coarsen matrix for b;

Here, blocks of the H «-tree are mapped to processors in a
top-down way.
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Top-down mapping during matrix construction for P = {0,...,15}:
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Top-down mapping during matrix construction for P = {0,...,15}:

Kriemann, » Task-Based H-Matrix




‘H-Matrix Construction with Coarsening

Top-down mapping during matrix construction for P = {0,...,15}:

Problem: costs for matrix construction differ depending on position
in matrix leading to load imbalance and hence, idle processors.

mann, » Task-Based 7




‘H-Matrix Construction with Coarsening

As an alternative, only the tasks and their dependencies are defined,
without processor mapping (bottom-up approach):

procedure MATRIXCONSTRUCT(b € T')
if bc L(T) then
task
build leaf matrix;
else
task
for all b’ € S(b) do // define task dependencies
sub task: MATRIXCONSTRUCT(b');

coarsen matrix for b;
This creates a task dependency tree equal to the H «-tree.

Since tasks appear early in the hierarchy, hierarchy traversal is
distributed to all processors.

As long as there are ready tasks, no processor idles.
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Mapping of matrix blocks to processors when using tasks:
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‘H-Matrix Construction with Coarsening

Mapping of matrix blocks to processors when using tasks:

Idling may still happen, e.g. if a very costly task is scheduled at the
end of the computation (but very unlikely in a typical H-matrix).



Numerical Results

‘H-matrix construction for Laplace-/Helmholtz-SLP on unit sphere:
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‘H-Matrix Multiplication

We consider the general update form A := aB - C + A, which
results in the following recursion:

procedure MUL(«, A, B, C)
if A, B,C are block matrices then
for i €0,1 do
for j€0,1 do
for /0,1 do
mul( a, Azj, Big, Cyj );

else

A=A+ aBC;




‘H-Matrix Multiplication

We consider the general update form A := aB - C + A, which
results in the following recursion:

procedure MUL(«, A, B, C)
if A, B,C are block matrices then
for i €0,1 do
for j€0,1 do
for /0,1 do
mul( «, Aij, Bie, Cyj );
else
task
A:= A+ aBC,

The work is performed if one of the matrices is a leaf matrix. Hence,
this forms a task.




7H -Matrix Multiplication

Critical Sections

During matrix multiplication, different tasks update the same matrix
block, which therefore forms a critical section, i.e. at most one
processor may write to the same matrix block at a time.

procedure MUL(«, A, B, C)
if A, B,C are block matrices then
for i,7,1€0,1 do
mul( @z Aij7 Bif; ng );
else
task

Critical: A .= A+ aBC;




7H -Matrix Multiplication

Critical Sections

During matrix multiplication, different tasks update the same matrix
block, which therefore forms a critical section, i.e. at most one
processor may write to the same matrix block at a time.

procedure MUL(«, A, B, C)
if A, B,C are block matrices then
for 7,5, €0,1 do
mul( @z Aij: Bl[, ng );

else
task
lock A
A:= A+ aBC,
unlock A

A mutex ensures, that only one processor may enter a critical section
while all other processors will wait for the mutex to be unlocked.



7H -Matrix Multiplication

Critical Sections

To avoid processor idling while waiting for a locked mutex, the
update may be split into computing the update matrix and applying
the update:

procedure MUL(«, A, B, C)
if A, B,C are block matrices then
for i,7,1€0,1 do
mul( @z Aij7 Bif; ng );

else

task // compute update
T := aBC,
task // apply update
lock A
A=A+T;
unlock A

Computing T is independent from all other tasks.

ask-Based




H -Matrix Multiplication

Numerical Results

‘H-matrix multiplication for (unsymmetric) Laplace-SLP matrix on

unit sphere:
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H-LU Factorisation



H-LU Factorisation

For an H-Matrix A over T, the LU factorisation A = LU is defined
by the block structure of A, L and U

Ago Aor) _ [Loo (Uoo Uni
Ay An Ly Ln Uin)’
which leads to the following equations:

Aoo = LooUoo (Recursion)
Ao1 = LooUo1 (Matrix Solve)
Ao = L1oUoo (Matrix Solve)
A11 = L1oUo1 + L11U11 (Update and Recursion)



Classical H-LU Algorithm

The above equations directly translate into an algorithm for the
‘H-LU factorisation:

procedure LU(A, L,U)
LU( Aoo, Loo, Uno );
SoLvELOWER( Ao1, Loo, Uo1 );
SoLvEUPPER( A1, L1o, Uoo );
Murriery( —1, Lio, Uot, A1 );
LU( Ai1, L11,U11 );




Classical H-LU Algorithm

The above equations directly translate into an algorithm for the
‘H-LU factorisation and matrix solves:
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Classical H-LU Algorithm

The above equations directly translate into an algorithm for the
‘H-LU factorisation and matrix solves:

procedure LU(A, L,U) procedure SOLVELOWER(A, L, B)
LU( Aoo, Loo, Uoo ); SOLVELOVVER( Aoo, LQO7 Boo );
SOLVELOWER( Ao1, Loo, Uo1 ); SOLVELOWER( Ao1, Loo, Bo1 );
SOLVEUPPER( A10, L10, Uoo ); MurtipLy( —1, Lo, Boo, A11 );
MurripLy( —1, Lio, Uor, A11 ); MurripLy( —1, Lio, Bo1, A1 );
LU( Au, Ln7 Uy ); SOLVELOWER( AlO, L11, Bl() );

SOLVELOWER( A11, L11, B11 );

Both procedures only consist of recursion and matrix multiplication.

Only at the level of leaves, specialised algorithms are needed, e.g.
factorise dense matrix or solve low-rank matrix.




Parallelisation

The algorithm is by itself inherently sequential.

Only the matrix solves may be performed in parallel:

procedure LU(A, L,U)
LU( Aoo, Loo, Uno );
{ SoLvELOWER( Ao1, Loo, Uo1 ) | SOLVEUPPER( A1g, L10, Uoo ); }
MurtipLY( —1, L1g, Uo1, A11 );
LU( A1, L11,U11 );




Parallelisation

The algorithm is by itself inherently sequential.
Only the matrix solves may be performed in parallel:

procedure LU(A, L,U)
LU( Aoo, Loo, Uno );
{ SoLvELOWER( Ao1, Loo, Uo1 ) | SOLVEUPPER( A1g, L10, Uoo ); }
MurtipLY( —1, L1g, Uo1, A11 );
LU( A1, L11,U11 );

Matrix solve algorithm can be parallelised only slightly better:

procedure SOLVELOWER(A, L, B)
{ SOLVELOWER( Ago, Loo, Boo ); | SOLVELOWER( Ao1, Loo, Bo1 );

)
{ MuctipLy( —1, L1g, Boo, A1o );| MurripLy( —1, Lyg, Bo1, A11 ); }
{ SOLVELOWER( A1, L11, B1o ); | SOLVELOWER( Aq1,L11, B11 ) }




Numerical Results

Parallel speedup for the H-LU factorisation of the H-matrix defined
by the Laplace SLP on the unit sphere:
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Numerical Results

Parallel speedup for the H-LU factorisation of the H-matrix defined

by the Laplace SLP on the unit sphere:
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Numerical Results

Parallel speedup for the H-LU factorisation of the H-matrix defined

by the Laplace SLP on the unit sphere:
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Numerical Results
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H-LU Factorisation Tasks

The equations

Apo = LooUoo A1 = LioUo1 + L11Uny
Aop1 = LooUo1 Ao = L1oUpo

define the computations on a per-block level. After recursion, this
defines all tasks of the computation:

0 1 2 3 4 5 6 7
Aroyx{oy =  Lioyx{oyUgoyx{oy
Amyxqoy = LyxqoyUgoyx{oy
Ayxiy = LoyxoyUgoyxny -
Arasyxio1y = Liasyx{0,13Uf0,13x{0,1}

Az syxge,ry =  Li2syxq2,3Uq2,3) (6,7}

~N O A W N = O

Ay = LinxnyUinxqny
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The equations

Apo = LooUoo A1 = LioUo1 + L11Uny
Aop1 = LooUo1 Ao = L1oUpo

define the computations on a per-block level. After recursion, this
defines all tasks of the computation:
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H-LU Factorisation Tasks

The equations
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The equations

Apo = LooUoo A1 = LioUo1 + L11Uny
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H-LU Factorisation Tasks

The equations

Apo = LooUoo A1 = LioUo1 + L11Uny
Aop1 = LooUo1 Ao = L1oUpo

define the computations on a per-block level. After recursion, this
defines all tasks of the computation:

0 1 2 3 4 5 6 7
Aroyx{oy =  Lioyx{oyUgoyx{oy
Amyxqoy = LyxqoyUgoyx{oy
Ayxiy = LoyxoyUgoyxny -
Arasyxio1y = Liasyx{0,13Uf0,13x{0,1}

Af2.3}x{6,7} Li2,3yx(2,3)Uq2,3) x 6,7}
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Task Execution Order

Using the classical recursive H-LU algorithm, those tasks are
processed in a localised execution order with single task execution
on the diagonal:
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Using the classical recursive H-LU algorithm, those tasks are
processed in a localised execution order with single task execution
on the diagonal:

To handle all tasks, 19 steps are needed.
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Task Execution Order

An optimal execution order only needs 15 steps and diagonal tasks
can be executed simultaneously with off-diagonal tasks:

For the 46 tasks in the example, the parallel speedup is increased

from % ~ 2.42 to ‘ll—g ~ 3.07 (not counting update tasks).
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Task Dependencies

The equations of the H-LU factorisation also define data
dependencies between matrix blocks, e.g.

= factorise or solve matrix blocks after applying all updates,
= solve off-diagonal blocks after diagonal factorisation, and
= perform matrix updates after matrix solves.
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The tasks and their dependencies can also be represented in the
form of a directed acyclic graph (DAG) with tasks as nodes and
dependencies as edges:

The start node of this DAG is the upper left matrix block, while the
end node is the lower left matrix block.



DAG Execution

As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
have finished.

Equivalently: all nodes with the same maximal distance from the
start node may be executed in parallel.
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As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
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As with implicit task dependencies, nodes in a DAG are scheduled
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As with implicit task dependencies, nodes in a DAG are scheduled
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As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
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DAG Execution

As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks

have finished.

Equivalently: all nodes with the same maximal distance from the

start node may be executed in parallel.
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DAG Execution

As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
have finished.
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DAG Execution

As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
have finished.

Equivalently: all nodes with the same maximal distance from the
start node may be executed in parallel.
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Numerical Results

Again, the H-LU factorisation of the Laplace SLP operator is
computed. The speedup of the task based algorithm is:
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Numerical Results

Function trace of H-LU factorisation:
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Domain-Decomposition



Domain-Decomposition

If domain decomposition or nested dissection is applied, H-matrices
have large, zero, off-diagonal blocks:

T ]
+ L
+

+

+

During LU factorisation, these blocks will remain zero, resulting in a
higher level of parallelism.



Domain-Decomposition

The task-based H-LU factorisation algorithm automatically exploits
this parallelism by using several start nodes in the DAG:
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= -
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+

The parallel speedup of the recursive H-LU algorithm is limited by
the size of the interface.



Domain-Decomposition

H-LU factorisation for convection-diffusion equation in R?:

Numerical Results
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Domain-Decomposition

Numerical Results

H-LU factorisation for convection-diffusion equation in R?:
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