
Task-BasedH-Matrix Arithmetics
Part I: Algorithm Design

Ronald Kriemann
MPI MIS

Winterschool on H-Matrices

2014



Introduction

Kriemann, »Task-Based H-Matrix Arithmetics« 2



Parallel Systems
Introduction

We consider shared-memory systems, i.e. computers with several
CPUs all accessing the same memory.

CPU CPU CPU CPU· · ·
Memory

Having a single address space for all processors, simplifies parallel
programming because inter-process communication is free.

Nowadays, each CPU consists of several compute cores. Multi-core
CPUs have 8-16 cores, e.g. Intel Xeon or AMD Opteron CPUs,
whereas many-core CPUs have 64 or more cores, e.g. Intel XeonPhi.

The main problem on such systems is to keep all cores busy .
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Parallel Systems
Introduction

If cores are idle during the execution of an algorithm, the parallel
speedup will deteriorate very rapidly.

The reason is Amdahl’s Law : the influence of the sequential part on
the speedup:
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Sources of idleness: sequential code, overhead, inefficiencies.
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Tasks
Introduction

An algorithm typically consists of many individual operations, e.g.
each update of yi in the dense matrix-vector multiplication

for i = 0, . . . , n− 1 do
for j = 0, . . . , n− 1 do

yi = yi +Aijxj ;

In a parallel algorithm, an atomic set of operations, which is
executed by a single processor is called a task.

Designing algorithms by concentrating on tasks can help to reduce
idle times on many-core systems.
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Tasks
Introduction

An algorithm can be implemented with a different task granularity :

for i = 0, . . . , n− 1 do
for j = 0, . . . , n− 1 do

task // One task per matrix entry
yi = yi +Aijxj ;

for i = 0, . . . , n− 1 do
task // One task per row

for j = 0, . . . , n− 1 do
yi = yi +Aijxj ;

If a task is too small, too much overhead due to task management
may occur.

If task granularity is too large, too few tasks may result, leaving
processors idle.
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Tasks
Introduction

Often, between different tasks dependencies exists, e.g. the result of
one task is the input of another task:

procedure DotProduct(x, y, i, j)
if i = j then

task
return xi · yi;

else
task

d0 := DotProduct(x, y, i, (i+ j)/2− 1);
d1 := DotProduct(x, y, (i+ j)/2, j);
return d0 + d1;

Here, the computation of the sub intervals has to finish before
computing the final result.
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Tasks
Introduction

To achieve an optimal parallel speedup, the task granularity and the
execution order of all tasks need to be optimal for a specific
computer system.

Various factors are to consider for an optimal granularity and
execution order: costs of tasks, number of processors, processor
layout, memory hierarchy, etc..

Often, some of these factors are unknown or very specific to a
computer system.

Fortunately, there is software available, which may be used to

• simplify task definition and
• optimise execution order.

However, for this, algorithm design has to be changed to be
task-based
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H-Matrix Construction
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H-Matrix Construction
Let I be an index set, T (I) a (binary) H-tree over I and
T = T (I × I) a H×-tree over T (I) with L(T ) being the set of
leaves of T .

The basic algorithm for H-matrix construction is

procedure MatrixConstruct(T )
for all b ∈ L(T ) do

task

if b is admissible then
build low-rank matrix;

else
build dense matrix;

The construction of each leaf in T defines a new task.
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H-Matrix Construction
The main properties of

procedure MatrixConstruct(T )

#pragma omp parallel for // loop-parallelisation in OpenMP

for all b ∈ L(T ) do

// each b on a different p

task
build dense/low-rank matrix for b;

are

• much more tasks (#L(T )) than processors and
• construction of a block does not depend on other blocks.

With this, a simple loop-parallelisation will result in an optimal
parallel speedup.
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H-Matrix Construction with Coarsening
H-Matrix Construction

When coarsening is added to matrix construction, the algorithm is
implemented via recursion, creating dependencies between tasks:

procedure MatrixConstruct(b ∈ T )
if b ∈ L(T ) then

build dense/low-rank matrix for b;
else

for all b′ ∈ S(b) do
MatrixConstruct(b′);

coarsen matrix for b;

The coarsening may be performed only after all sub blocks have
been created!

Properties:
• still much more tasks (#T ) than processors and
• tasks are not independent (dependency follows hierarchy).
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H-Matrix Construction with Coarsening
H-Matrix Construction

A parallel version of MatrixConstruct with simple
loop-parallelisation:

procedure MatrixConstruct(b ∈ T )
if b ∈ L(T ) then

build dense/low-rank matrix for b;
else

#pragma omp parallel for
for all b′ ∈ S(b) do

MatrixConstruct(b′);
coarsen matrix for b;

Here, blocks of the H×-tree are mapped to processors in a
top-down way.
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H-Matrix Construction with Coarsening
H-Matrix Construction

Top-down mapping during matrix construction for P = {0, . . . , 15}:

{0,1,2,3} {4,5,6,7}

{8,9,10,11} {12,13,14,15}

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Problem: costs for matrix construction differ depending on position
in matrix leading to load imbalance and hence, idle processors.
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H-Matrix Construction with Coarsening
H-Matrix Construction

As an alternative, only the tasks and their dependencies are defined,
without processor mapping (bottom-up approach):

procedure MatrixConstruct(b ∈ T )
if b ∈ L(T ) then

task
build leaf matrix;

else
task

for all b′ ∈ S(b) do // define task dependencies
sub task: MatrixConstruct(b′);

coarsen matrix for b;

This creates a task dependency tree equal to the H×-tree.

Since tasks appear early in the hierarchy, hierarchy traversal is
distributed to all processors.

As long as there are ready tasks, no processor idles.
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H-Matrix Construction with Coarsening
H-Matrix Construction

Mapping of matrix blocks to processors when using tasks:

Idling may still happen, e.g. if a very costly task is scheduled at the
end of the computation (but very unlikely in a typical H-matrix).
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Numerical Results
H-Matrix Construction

H-matrix construction for Laplace-/Helmholtz-SLP on unit sphere:
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H-Matrix Multiplication
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H-Matrix Multiplication
We consider the general update form A := αB · C +A, which
results in the following recursion:

procedure mul(α,A,B,C)
if A,B,C are block matrices then

for i ∈ 0, 1 do
for j ∈ 0, 1 do

for ` ∈ 0, 1 do
mul( α,Aij , Bi`, C`j );

else

task

A := A+ αBC;

The work is performed if one of the matrices is a leaf matrix. Hence,
this forms a task.
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Critical Sections
H-Matrix Multiplication

During matrix multiplication, different tasks update the same matrix
block, which therefore forms a critical section, i.e. at most one
processor may write to the same matrix block at a time.

procedure mul(α,A,B,C)
if A,B,C are block matrices then

for i, j, l ∈ 0, 1 do
mul( α,Aij , Bi`, C`j );

else
task

lock A

Critical: A := A+ αBC;

unlock A

A mutex ensures, that only one processor may enter a critical section
while all other processors will wait for the mutex to be unlocked.
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Critical Sections
H-Matrix Multiplication

To avoid processor idling while waiting for a locked mutex, the
update may be split into computing the update matrix and applying
the update:

procedure mul(α,A,B,C)
if A,B,C are block matrices then

for i, j, l ∈ 0, 1 do
mul( α,Aij , Bi`, C`j );

else
task // compute update

T := αBC;
task // apply update

lock A
A := A+ T ;

unlock A

Computing T is independent from all other tasks.
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Numerical Results
H-Matrix Multiplication

H-matrix multiplication for (unsymmetric) Laplace-SLP matrix on
unit sphere:
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H-LU Factorisation
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H-LU Factorisation
For an H-Matrix A over T , the LU factorisation A = LU is defined
by the block structure of A,L and U(

A00 A01
A10 A11

)
=
(
L00
L10 L11

)
·
(
U00 U01

U11

)
,

which leads to the following equations:

A00 = L00U00 (Recursion)
A01 = L00U01 (Matrix Solve)
A10 = L10U00 (Matrix Solve)
A11 = L10U01 + L11U11 (Update and Recursion)
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ClassicalH-LU Algorithm
H-LU Factorisation

The above equations directly translate into an algorithm for the
H-LU factorisation:

and matrix solves:

procedure LU(A, L, U)
LU( A00, L00, U00 );
SolveLower( A01, L00, U01 );
SolveUpper( A10, L10, U00 );
Multiply( −1, L10, U01, A11 );
LU( A11, L11, U11 );

procedure SolveLower(A, L, B)
SolveLower( A00, L00, B00 );
SolveLower( A01, L00, B01 );
Multiply( −1, L10, B00, A11 );
Multiply( −1, L10, B01, A11 );
SolveLower( A10, L11, B10 );
SolveLower( A11, L11, B11 );

Both procedures only consist of recursion and matrix multiplication.

Only at the level of leaves, specialised algorithms are needed, e.g.
factorise dense matrix or solve low-rank matrix.
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Parallelisation
H-LU Factorisation

The algorithm is by itself inherently sequential .

Only the matrix solves may be performed in parallel:

procedure LU(A,L,U)
LU( A00, L00, U00 );
{ SolveLower( A01, L00, U01 ) solveUpper( A10, L10, U00 ); }
Multiply( −1, L10, U01, A11 );
LU( A11, L11, U11 );

Matrix solve algorithm can be parallelised only slightly better:

procedure SolveLower(A,L,B)
{ SolveLower( A00, L00, B00 ); SolveLower( A01, L00, B01 ); }
{ Multiply( −1, L10, B00, A10 ); Multiply( −1, L10, B01, A11 ); }
{ SolveLower( A10, L11, B10 ); SolveLower( A11, L11, B11 ); }
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Numerical Results
H-LU Factorisation

Parallel speedup for the H-LU factorisation of the H-matrix defined
by the Laplace SLP on the unit sphere:
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Numerical Results
H-LU Factorisation

Function trace of H-LU factorisation:

(Xeon E5-2640)
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Task-basedH-LU Factorisation
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H-LU Factorisation Tasks
Task-basedH-LU Factorisation

The equations

A00 = L00U00 A11 = L10U01 + L11U11

A01 = L00U01 A10 = L10U00

define the computations on a per-block level. After recursion, this
defines all tasks of the computation:
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A{0}×{0} = L{0}×{0}U{0}×{0}

A{1}×{0} = L{1}×{0}U{0}×{0} . . .

A{0}×{1} = L{0}×{0}U{0}×{1} . . .

A{4,5}×{0,1} = L{4,5}×{0,1}U{0,1}×{0,1} . . .
...

A{2,3}×{6,7} = L{2,3}×{2,3}U{2,3}×{6,7}
...

A{7}×{7} = L{7}×{7}U{7}×{7}
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Task Execution Order
Task-basedH-LU Factorisation

Using the classical recursive H-LU algorithm, those tasks are
processed in a localised execution order with single task execution
on the diagonal:

To handle all tasks, 19 steps are needed.
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Task Execution Order
Task-basedH-LU Factorisation

An optimal execution order only needs 15 steps and diagonal tasks
can be executed simultaneously with off-diagonal tasks:

For the 46 tasks in the example, the parallel speedup is increased
from 46

19 ≈ 2.42 to 46
15 ≈ 3.07 (not counting update tasks).
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Task Dependencies
Task-basedH-LU Factorisation

The equations of the H-LU factorisation also define data
dependencies between matrix blocks

, e.g.

• factorise or solve matrix blocks after applying all updates,
• solve off-diagonal blocks after diagonal factorisation, and
• perform matrix updates after matrix solves.
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Task Dependencies
Task-basedH-LU Factorisation

The tasks and their dependencies can also be represented in the
form of a directed acyclic graph (DAG) with tasks as nodes and
dependencies as edges:

The start node of this DAG is the upper left matrix block, while the
end node is the lower left matrix block.
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DAG Execution
Task-basedH-LU Factorisation

As with implicit task dependencies, nodes in a DAG are scheduled
for execution, when all dependencies are met, i.e. predecessor tasks
have finished.

Equivalently: all nodes with the same maximal distance from the
start node may be executed in parallel.
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Numerical Results
Task-basedH-LU Factorisation

Again, the H-LU factorisation of the Laplace SLP operator is
computed. The speedup of the task based algorithm is:
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Numerical Results
Task-basedH-LU Factorisation

Function trace of H-LU factorisation:
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Domain-Decomposition
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Domain-Decomposition

If domain decomposition or nested dissection is applied, H-matrices
have large, zero, off-diagonal blocks:

During LU factorisation, these blocks will remain zero, resulting in a
higher level of parallelism.
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Domain-Decomposition

The task-based H-LU factorisation algorithm automatically exploits
this parallelism by using several start nodes in the DAG:

The parallel speedup of the recursive H-LU algorithm is limited by
the size of the interface.
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Numerical Results
Domain-Decomposition

H-LU factorisation for convection-diffusion equation in R2:
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Numerical Results
Domain-Decomposition

H-LU factorisation for convection-diffusion equation in R3:
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