
Introduction to Parallel Programming

Ronald Kriemann

1. Introduction
1.1. Why Go Parallel
1.2. Lecture Topics

2. Parallel Programming Platforms
2.1. SIMD
2.2. SPMD
2.3. Shared-Memory Machines
2.4. Distributed-Memory Machines
2.5. Hybrid Systems

3. Parallel Algorithm Design
3.1. Tasks and DAGs
3.2. Decomposition Techniques

3.2.1. Recursive Decomposition
3.2.2. Data Decomposition

3.3. Task Mapping and Load Balancing
3.3.1. Static Mapping
3.3.2. Array Distributions

3.3.3. Cyclic Array Distributions
3.3.4. Graph Partitioning
3.3.5. Dynamic Mapping

3.4. Parallel Algorithm Models
3.4.1. Data-Parallel Model
3.4.2. Task-Graph Model
3.4.3. Work Pool Model
3.4.4. Master-Slave Model
3.4.5. Pipeline Model

4. Performance Metrics and Complexity
4.1. Performance Metrics

4.1.1. Speedup
4.1.2. Amdahl’s Law
4.1.3. Gustafson’s Law
4.1.4. Example: Parallel Sum
4.1.5. Efficiency
4.1.6. Scalability

4.2. Complexity Analysis
4.2.1. PRAM
4.2.2. BSP Machine

4.3. General Message Passing

Introduction

Kriemann, »Introduction to Parallel Programming« 3

Why Go Parallel
Introduction

Clock speed of processors in the last 10 years:

2004 2005 2006 2007 2008 2009 2010 2011 2012

2.0 GHz

2.5 GHz

3.0 GHz

3.5 GHz

4.0 GHz

4.5 GHz

5.0 GHz

P4 Northwood

P4 Prescott

PentiumD Presler

Core 2 Duo E6700

Core 2 Duo E6850

Core 2 Quad Q9650

Core i7-880

Core i7-990X

Core i7-3820

Athlon 64 3800

Athlon 64 FX-57

Athlon 64 X2 6400

Phenom X4 9850B

Phenom II X4 970

Phenom II X4 980

PowerPC 970MP

POWER5+

POWER6

POWER7

No longer hope for “free” performance increase by increased clock speeds (Sutter
2005).

Kriemann, »Introduction to Parallel Programming« 4

Why Go Parallel
Introduction

Instead of clock speed, processors have more and more cores:

Year Processor #cores

2006 Core 2 Duo 2
2007 Core 2 Quad 4
2010 Core i7-9xx 6
2010 Xeon 7xxx 8

2012 Xeon Phi 5110P 60

2005 Athlon 64 X2 2
2007 Phenom X4 4
2010 Phenom II X6 6
2010 Opteron 6100 8/12
2011 Opteron 6200 16

To speed up software, programmers have to use more execution paths
simultaneously, e.g. design and implement parallel algorithms.

Kriemann, »Introduction to Parallel Programming« 5

Why Go Parallel
Introduction

List of Top 500 super computers of the last years (Wikipedia):

Nov 2012 18,688 CPUs (16 cores) + 18,688 GPUs 17.59 PFLOPS
Jun 2012 1,572,864 cores 13.32 PFLOPS
Jun 2011 88,128 CPUs (8 cores) 10.51 PFLOPS
Nov 2010 14,336 CPUs (6 cores) + 7,168 GPUs 2.57 PFLOPS
Nov 2009 37,376 CPUs (6 cores) + 14,336 CPUs (4 cores) 1.75 PFLOPS
Jun 2008 12,960 CPUs + 6,480 CPUs (2 cores) 1.04 PFLOPS
Nov 2004 106,496 CPUs (2 cores) 0.60 PFLOPS
Jun 2002 5120 vector processors 0.13 PFLOPS

Supercomputing Centers in Germany:

Jülich : JUQUEEN, 458,752 cores, 4.1 PFLOPS
LRZ : SuperMUC, 19,252 CPUs (8 cores / 10 cores), 2.9 PFLOPS

HLRS : CRAY XE6, 7,104 CPUs (16 cores), 0.8 PFLOPS

Kriemann, »Introduction to Parallel Programming« 6

Lecture Topics
Introduction

Outline of the lecture:

1 Theoretical Foundations:
• Parallel Programming Platforms
• Parallel Algorithm Design
• Performance Metrics

2 Vectorisation
• Auto- and Manual Vectorisation

3 Programming Shared-Memory Systems
• OpenMP
• Thread Building Blocks

4 Programming Distributed-Memory Systems
• Message Passing Interface

The lecture is (partly) based on A. Grama et al. 2003.

Kriemann, »Introduction to Parallel Programming« 7

Parallel Programming
Platforms

Kriemann, »Introduction to Parallel Programming« 8

Parallel Programming Platforms
In contrast to sequential platforms, parallel platforms come in a great variety.

A basic classification may be according to

Control Flow
• Single-Instruction-Multiple-Data (SIMD),
• Single-Program-Multiple-Data (SPMD),

or

Communication Model
• Shared-Memory Machines,
• Distributed-Memory Machines.

Kriemann, »Introduction to Parallel Programming« 9

SIMD
Parallel Programming Platforms

In a single instruction multiple data (SIMD) architecture, a central control unit
performs the same instruction on different data streams.

...

opi

opi+1 opi+2 opi+3

Here, the instruction stream goes synchronous with the data stream on all
processing units.

An example for such an architecture are vector machines or vector units in
processors. Handling the latter is discussed in the section about Vectorisation.

Kriemann, »Introduction to Parallel Programming« 10

SIMD
Parallel Programming Platforms

In a single instruction multiple data (SIMD) architecture, a central control unit
performs the same instruction on different data streams.

...

opi

opi+1

opi+2 opi+3

Here, the instruction stream goes synchronous with the data stream on all
processing units.

An example for such an architecture are vector machines or vector units in
processors. Handling the latter is discussed in the section about Vectorisation.

Kriemann, »Introduction to Parallel Programming« 10

SIMD
Parallel Programming Platforms

In a single instruction multiple data (SIMD) architecture, a central control unit
performs the same instruction on different data streams.

...

opi opi+1

opi+2

opi+3

Here, the instruction stream goes synchronous with the data stream on all
processing units.

An example for such an architecture are vector machines or vector units in
processors. Handling the latter is discussed in the section about Vectorisation.

Kriemann, »Introduction to Parallel Programming« 10

SIMD
Parallel Programming Platforms

In a single instruction multiple data (SIMD) architecture, a central control unit
performs the same instruction on different data streams.

...

opi opi+1 opi+2

opi+3

Here, the instruction stream goes synchronous with the data stream on all
processing units.

An example for such an architecture are vector machines or vector units in
processors. Handling the latter is discussed in the section about Vectorisation.

Kriemann, »Introduction to Parallel Programming« 10

SPMD
Parallel Programming Platforms

Having multiple instructions working on multiple data stream is referred to as
MIMD architectures, which can easily be implemented in a single program
starting with various if blocks, each for a different task, leading to
single-program multiple-data machines (SPMD).

Each parallel execution path in such a program may be completely independent
from all other paths, but there may be various synchronisation points, e.g. for
data exchange.

...
opp

i

op3
i

op2
i

op1
i

opp
i+1

op3
i+1

op2
i+1

op1
i+1

opp
i+2

op3
i+1

op2
i+2

op1
i+2

opp
ip

op3
i3

op2
i2

op1
i1

Most programs using multiple threads (see OpenMP/TBB) or message passing
(see MPI) are based on the SPMD scheme.

Kriemann, »Introduction to Parallel Programming« 11

SPMD
Parallel Programming Platforms

Having multiple instructions working on multiple data stream is referred to as
MIMD architectures, which can easily be implemented in a single program
starting with various if blocks, each for a different task, leading to
single-program multiple-data machines (SPMD).

Each parallel execution path in such a program may be completely independent
from all other paths, but there may be various synchronisation points, e.g. for
data exchange.

...

opp
i

op3
i

op2
i

op1
i

opp
i+1

op3
i+1

op2
i+1

op1
i+1

opp
i+2

op3
i+1

op2
i+2

op1
i+2

opp
ip

op3
i3

op2
i2

op1
i1

Most programs using multiple threads (see OpenMP/TBB) or message passing
(see MPI) are based on the SPMD scheme.

Kriemann, »Introduction to Parallel Programming« 11

SPMD
Parallel Programming Platforms

Having multiple instructions working on multiple data stream is referred to as
MIMD architectures, which can easily be implemented in a single program
starting with various if blocks, each for a different task, leading to
single-program multiple-data machines (SPMD).

Each parallel execution path in such a program may be completely independent
from all other paths, but there may be various synchronisation points, e.g. for
data exchange.

...

opp
i

op3
i

op2
i

op1
i

opp
i+1

op3
i+1

op2
i+1

op1
i+1

opp
i+2

op3
i+1

op2
i+2

op1
i+2

opp
ip

op3
i3

op2
i2

op1
i1

Most programs using multiple threads (see OpenMP/TBB) or message passing
(see MPI) are based on the SPMD scheme.

Kriemann, »Introduction to Parallel Programming« 11

SPMD
Parallel Programming Platforms

Having multiple instructions working on multiple data stream is referred to as
MIMD architectures, which can easily be implemented in a single program
starting with various if blocks, each for a different task, leading to
single-program multiple-data machines (SPMD).

Each parallel execution path in such a program may be completely independent
from all other paths, but there may be various synchronisation points, e.g. for
data exchange.

...

opp
i

op3
i

op2
i

op1
i

opp
i+1

op3
i+1

op2
i+1

op1
i+1

opp
i+2

op3
i+1

op2
i+2

op1
i+2

opp
ip

op3
i3

op2
i2

op1
i1

Most programs using multiple threads (see OpenMP/TBB) or message passing
(see MPI) are based on the SPMD scheme.

Kriemann, »Introduction to Parallel Programming« 11

Shared-Memory Machines
Parallel Programming Platforms

In a shared memory system, all processors are connected to a shared memory, i.e.
every memory position is directly accessible (read/write) by all processors.

CPU CPU CPU CPU· · ·

Memory

All communication between different processors is performed by changing data
stored in the shared memory.

Remark
Instead of CPU one may also refer to each (logical) core within a physical processor.

Kriemann, »Introduction to Parallel Programming« 12

Shared-Memory Machines
Parallel Programming Platforms

Often, the memory is constructed in some hierarchical form with local and
remote (or global) memory for each processor.

If the time to access a single data in memory is independent from the memory
position, e.g. local or remote memory, it is called uniform memory access
(UMA). Otherwise, it is called non uniform memory access (NUMA). The
difference between both types is important for the design of parallel algorithms.

Remark
Processor cache is not considered for the classification of UMA or NUMA.

Kriemann, »Introduction to Parallel Programming« 13

Shared-Memory Machines
Parallel Programming Platforms

Shared-Memory vs. Shared-Address-Space
Different processes (programs) running on a shared memory usually do not have
a shared address space, e.g. processes are not allowed to access the memory of
other processes.
Threads (see OpenMP/TBB) are the most widely used form of having a shared
address space for different execution paths.
Another way is defined by “shared memory” in terms of inter-process
communication (IPC, see W.R. Stevens 1998), a set of different methods for
exchanging data between different processes. IPC is not discussed in this lecture!

Remark
In this lecture, shared memory is considered the same as shared address space.

Kriemann, »Introduction to Parallel Programming« 14

Distributed-Memory Machines
Parallel Programming Platforms

In a distributed memory system, each processor has a dedicated, local memory ,
e.g. only the local processor may access data within this memory. All exchange
of data is performed via a communication network.

Mem

CPU

Mem

CPU

Mem

CPU

Mem

CPU· · ·

Network

The standard communication paradigm on distributed memory platforms is
message passing (see MPI).

As before, distributed memory platforms are considered as distributed address
space systems, e.g. may also refer to different processes on a shared memory
system using the shared memory as the communication layer.

Kriemann, »Introduction to Parallel Programming« 15

Distributed-Memory Machines
Parallel Programming Platforms

The communication network may come in a wide variety of different forms.

fully connected Star 2D-Mesh

Hypercube Fat Tree
The network topology has, in principle, a significant influance on the design and
efficiency of parallel algorithms.

Kriemann, »Introduction to Parallel Programming« 16

Distributed-Memory Machines
Parallel Programming Platforms

Distributed memory systems may also be programmed using a shared address
space, which is implemented by some extra software, e.g.

• RDMA (Remote Direct Memory Address, also part of MPI),
• PGAS (Partitioned Global Address Space)

Such methods simplify programming, but each remote memory access involves a
send/receive operation and hence, creates extra costs.

Kriemann, »Introduction to Parallel Programming« 17

Hybrid Systems
Parallel Programming Platforms

The majority of parallel systems follows a hybrid approach: a set of shared
memory systems connected via a network.

Programming such systems can be done by using a combination of the above
described techniques, e.g. threads + message passing, or with message passing
alone, using IPC on shared memory sub-systems. The optimal approach is
heavily dependent on the specific algorithm.

Kriemann, »Introduction to Parallel Programming« 18

Hybrid Systems
Parallel Programming Platforms

Our locally installed compute cluster also follows the hybrid approach:

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM256 GB RAM

Xeon Phi 5110P

Infiniband Interconnect (FDR10)

Compute cluster at “Rechenzentrum Garching” of the MPG has (almost) the
same configuration but with 610 nodes.

Kriemann, »Introduction to Parallel Programming« 19

Hybrid Systems
Parallel Programming Platforms

Our locally installed compute cluster also follows the hybrid approach:

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM

Xeon
E5-2640

Xeon
E5-2640

128 GB RAM256 GB RAM

Xeon Phi 5110P

Infiniband Interconnect (FDR10)

Compute cluster at “Rechenzentrum Garching” of the MPG has (almost) the
same configuration but with 610 nodes.

Kriemann, »Introduction to Parallel Programming« 19

Parallel Algorithm
Design

Kriemann, »Introduction to Parallel Programming« 20

Tasks and DAGs
Parallel Algorithm Design

Decomposition
For a parallel computation, the work has to be divided into smaller parts, which
then may be executed in parallel. This process is called decomposition.

Task
Each part of the computation as defined by the programmer due to
decomposition is called a task. A task is considered an atomic computational
unit, i.e. is not divided any further.
The goal is to define as many independent tasks as possible to compute as much
as possible in parallel.
Different tasks of the same computation may be of different size.

Kriemann, »Introduction to Parallel Programming« 21

Tasks and DAGs
Parallel Algorithm Design

As an example, consider the dense matrix-vector multiplication y = Ax, with
A ∈ Rn×n:

yi :=
∑

j

aijxj

which may be split into tasks for each dot-product of the rows Ai,• with the
vector x:

A xy

=

Each of these n tasks may be computed in parallel as no dependency exists
between them.

Kriemann, »Introduction to Parallel Programming« 22

Tasks and DAGs
Parallel Algorithm Design

The set of tasks could be further enlarged by dividing the dot-product
computation into smaller tasks, i.e. one task per aijxj . That way, we end up
with n2 independent tasks and may utilise even more parallel resources.

But, the computation of all products aijxj is only the first step in the
computation of the actual dot-product as all results have to be summed up.
Consider the following summation procedure:

ai0x0 ai1x1 ai2x2 ai3x3 ai4x4 ai5x5 ai6x6 ai7x7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

Tasks for the computation of di
k` depend on the results of other tasks. The

dependency connection between all tasks forms a directed acyclic graph (DAG),
the task-dependency graph.

Kriemann, »Introduction to Parallel Programming« 23

Tasks and DAGs
Parallel Algorithm Design

Handling each sum in a separate task results in an additional
n− 1 tasks per row.
But due to the dependencies, not all these tasks can be
executed in parallel, which reduces the concurrency of the
parallel program.

Concurrency
For a given set of tasks with dependencies, the maximal number of tasks which
can be executed simultaneously is known as the maximal degree of concurrency
(maximal concurrency).
The maximal concurrency is usually less then the number of tasks.
Oten more important is the average degree of concurrency (average
concurrency), i.e. the average number of tasks to run simultaneously during the
runtime of the program.

Kriemann, »Introduction to Parallel Programming« 24

Tasks and DAGs
Parallel Algorithm Design

Below are two task-dependency graphs for the dot-product with an equal
maximal concurrency, but a different average concurrency.

For a general computation, the optimal DAG is dependent on the costs per tasks
(see below).

Kriemann, »Introduction to Parallel Programming« 25

Tasks and DAGs
Parallel Algorithm Design

Task Interaction
Tasks dependence usually exists because the output of one task is the input of
another task.
But even between independent tasks, a hidden dependence may exist, e.g. if
(initial) input data is stored on different tasks.

Example: Dense Matrix-Vector Multiplication
Consider the dense matrix-vector multiplication y = Ax on four processors, with
row-wise tasks and a index-wise decomposition of the vectors.

A xy

=

Each task needs the entries of the vector x stored on all other tasks for the local
computations. Hence, on a distributed memory system an initial send/recieve
step is neccessary, before the actual computations may start.

Such task interaction may limit the gain of using parallel resources.
Kriemann, »Introduction to Parallel Programming« 26

Tasks and DAGs
Parallel Algorithm Design

Granularity
Handling all multiplications aijxj in a different task results in the maximal
number of tasks possible for computing the matrix-vector product.
The opposite extreme would be the computation of the whole product in a single
task.
The number and size of tasks determines the granularity of the decomposition.
The more tasks the more fine-grained the decomposition is, whereas a small
number of tasks yields a coarse-grained decomposition.

Example: Dense Matrix-Vector Multiplication
A block approach with each task computing the dot-product for several rows
leads to a different granularity:

Kriemann, »Introduction to Parallel Programming« 27

Decomposition Techniques
Parallel Algorithm Design

Designing a parallel algorithm starts with the decomposition of the work into
tasks.

The specific way, in which the work is decomposed is heavily dependent on the
algorithm and the computer architecture. Furthermore, different decompositions
may lead to different runtime or complexity of the final program.

Two general techniques have proven helpful as a starting point:

recursive decomposition: based on the structure of the algorithm,
data decomposition: based on the layout of the data

The following two techniques may help for special problems:

exploratory decomposition: to explore a search space,
speculative decomposition: to handle different branches in parallel

Kriemann, »Introduction to Parallel Programming« 28

Recursive Decomposition
Decomposition Techniques

Recursive Decomposition uses a divide-and-conquer strategy to decompose the
problem into independent sub-problems, to which the decomposition is then
recursively applied.

Example: Fibonacci number

long fib (long n) {
if (n < 2)
return 1;

else {
long f1 = spawn_task(fib(n−1));
long f2 = spawn_task(fib(n−2));

return f1+f2;
}

}
1 0

2 1 1 0

3 2

4

Recursive decomposition creates independent and therefore concurrent tasks.

Furthermore, overhead associated with task creation may also be distributed
among the parallel computing resources.

Kriemann, »Introduction to Parallel Programming« 29

Recursive Decomposition
Decomposition Techniques

Recursive decomposition may often also be applied, if the standard sequential
algorithm does not use recursion.

Example: dot-product
The standard sequential implementation uses a single loop:
double dot_product (int n, double ∗ x, double ∗ y) {

double d = 0.0;

for (int i = 0; i < n; ++i)
d = d + x[i]∗y[i];

return d;
}

which can be reformulated using recursion by splitting the vector in half:
double dot_product (int n, double ∗ x, double ∗ y) {

if (n == 1)
return x[0]∗y[0];

else {
double d1 = spawn_task(dot_product(n/2, x, y));
double d2 = spawn_task(dot_product(n/2, x+n/2, y+n/2));

return d1+d2;
}

}

Kriemann, »Introduction to Parallel Programming« 30

Data Decomposition
Decomposition Techniques

Decomposition based on the involved data is done in two steps:

1 define the actual decomposition of the data, e.g. onto different processors,
and then

2 decompose the computation based on the data decomposition into tasks.

Different algorithm data may be used to define the data decomposition:

Output Data: decompose the results of the computation,
Input Data: decompose the input data,

Intermediate Data: decompose auxiliary data appearing during the computation.

Furthermore, combinations of the above may be used for the decomposition.

Kriemann, »Introduction to Parallel Programming« 31

Data Decomposition
Decomposition Techniques

Partitioning Output Data
Consider the matrix multiplication

A ·B = C

with matrices A, B, C ∈ Rn×n.
The multiplication shall be performed block-wise(

A11 A12

A21 A22

)
·

(
B11 B12

B21 B22

)
=

(
C11 C12

C21 C22

)

with sub matrices Aij , Bij , Cij ∈ Rn/2×n/2 of A, B and C, respectively.
Thus, the multiplication decomposes into the multiplications

C11 := A11B11 + A12B21,

C12 := A11B12 + A12B22,

C21 := A21B11 + A22B21,

C22 := A21B12 + A22B22

Kriemann, »Introduction to Parallel Programming« 32

Data Decomposition
Decomposition Techniques

Partitioning Output Data
The output of the matrix multiplication is the matrix C, which computation
defines four tasks:

Task 1: C11 := A11B11 + A12B21,
Task 2: C12 := A11B12 + A12B22,
Task 3: C21 := A21B11 + A22B21,
Task 4: C22 := A21B12 + A22B22

“Task Layout” of C

Remark
Using the eight sub multiplications, the work may even be split with a finer granularity:

C11 ← A11B11, C11 ← A12B21,

C12 ← A11B12, C12 ← A12B22,

C21 ← A21B11, C21 ← A22B21,

C22 ← A21B12, C22 ← A22B22

with ← denoting either an initialisation Cij := AikBkj or an update
Cij := Cij + AikBkj of the destination matrix.

Kriemann, »Introduction to Parallel Programming« 33

Data Decomposition
Decomposition Techniques

Partitioning Input Data
Consider the dot-product computation: the output is just a single value. In
comparison, the input data may be arbitrary large.
Instead of the previous recursion, the input data may be decomposed explicitly
into blocks of size n/p:

The computation starts at the per-process input blocks and combines the results
afterwards:
double dot_product (int n_loc, double ∗ x_loc, double ∗ y_loc) {

double d_loc = 0;

for (int i = 0; i < n_loc; ++i)
d_loc = d_loc + x_loc[i]∗y_loc[i];

combine(d_loc);
}

Kriemann, »Introduction to Parallel Programming« 34

Data Decomposition
Decomposition Techniques

Partitioning Intermediate Data
Back at the matrix multiplications: the sub multiplications of A ·B = C

D111 = A11B11, D121 = A12B21,

D112 = A11B12, D122 = A12B22,

D211 = A21B11, D221 = A22B21,

D212 = A21B12, D222 = A22B22
A

B

form a 2× 2× 2 tensor D with Cij :=
∑

k
Dikj .

Each of the eight Dikj := AikBkj defines a task. In addition, the sums
Cij :=

∑
k

Dikj lead to another four tasks.
Although the memory consumption is increased, the granularity is finer and the
concurrency is higher compared to the previous approaches.

Remark
In contrast to the decomposition based on the output data, no interaction exists
between the eight Dikj tasks.

Kriemann, »Introduction to Parallel Programming« 35

Task Mapping and Load Balancing
Parallel Algorithm Design

Up to now, the individual tasks for the computation of the problem have been
defined.

Next step is the mapping of these tasks onto the processors, with a given
objective. Typical objectives are minimal

• total runtime (by far the most important!) or
• memory consumption, e.g. with limited memory per node in a distributed
memory system.

Task interaction or dependence results in overhead :

• data has to be exchanged between processors or,
• processors are idle because input data is not yet computed.

Furthermore, processors may be idle due to bad load balancing , e.g. different
computing costs per task may lead to some processors finished before others.

Kriemann, »Introduction to Parallel Programming« 36

Task Mapping and Load Balancing
Parallel Algorithm Design

For a minimal runtime

• reducing interaction and
• reducing idling

are the main objectives for the task mapping.

Remark
Minimal interaction and idling are usually conflicting with each other, e.g. minimal
interaction may be achieved by assigning all tasks to one processor, leaving all others
idle.

Mapping techniques may be classified by the time when the mapping is applied:

Static Mapping : maps tasks to processors before algorithm execution or
Dynamic Mapping : maps tasks to processors during algorithm execution.

Kriemann, »Introduction to Parallel Programming« 37

Static Mapping
Task Mapping and Load Balancing

As the mapping is computed a priori, knowledge of task size, task interaction
and dependence should be available. As a rule: the better the knowledge, the
better the mapping.

Unfortunately, even for known task sizes, the mapping problem is NP-hard
(Garey and Johnson 1979), but good heuristics are available, e.g. List (Garey
and Johnson 1979) or Multifit scheduling (Coffman, Garey, and Johnson 1978).

Beside the general mapping algorithms, concrete properties of the algorithm or
the involved data may be used for mapping the tasks, e.g.

• data decomposition induces mapping (or vice versa!) and
• task dependence/interaction defines mapping

Kriemann, »Introduction to Parallel Programming« 38

Array Distributions
Task Mapping and Load Balancing

A given d-dimensional array is partitioned such that each process receives a
contiguous block along a subset of the array dimensions.

For A ∈ Rn×n, one-dimensional distributions may either be according to the
rows or the columns of the matrix:

p0

p1

p2

p3

p4

p5

p6

p7

p0 p1 p2 p3 p4 p5 p6 p7

row-wise column-wise

In the latter distribution, processor pi, 0 ≤ i < p, will hold the columns · · · i · n
p
· · · (i + 1) · n

p
− 1 · · ·


Kriemann, »Introduction to Parallel Programming« 39

Array Distributions
Task Mapping and Load Balancing

In two-dimensional distributions the partitioning of the rows and columns may be
independent:

p0

p4

p8

p12

p1

p5

p9

p13

p2

p6

p10

p14

p3

p7

p11

p15

p0

p8

p1

p9

p2

p10

p3

p11

p4

p12

p5

p13

p6

p14

p7

p15

4 × 4 distribution 2 × 8 distribution

Let br and bc the number of block rows and columns, then each processor will
hold n/br × n/bc entries of the matrix.

Kriemann, »Introduction to Parallel Programming« 40

Cyclic Array Distributions
Task Mapping and Load Balancing

In many application, a contiguous mapping will lead to processor idling.

Example: LU Factorisation

void lu (int n, Matrix & A) {
for (int k = 0; k < n; ++k) {

// compute column
for (int j = k; j < n; ++j)

A(j,k) = A(j,k) / A(k,k);
// update trailing matrix
for (int j = k+1; j < n; ++j)

for (int i = k+1; i < n; ++i)
A(i,j)−= A(i,k) / A(k,j);

}
}

inactive

akk

With previous mappings, the larger k the more processors will be idle:

p0 p1 p2 p3

p0 p1 p2

p3 p4 p5

p6 p7 p8

Kriemann, »Introduction to Parallel Programming« 41

Cyclic Array Distributions
Task Mapping and Load Balancing

Alternatively, the array distribution is applied cyclically , with 1 ≤ nc ≤ n/p
being the number of cycles.

For the one-dimensional array distribution, the n rows/columns will be divided
into nc groups of n/nc contiguous rows/columns. Each of these groups is then
divided using the default array distribution, e.g. processor pi will hold
rows/columns(

j
n

nc
+ i · n

ncp

)
. . .

(
j

n

nc
+ (i + 1) · n

ncp
− 1
)

for 0 ≤ j < nc:

p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

Kriemann, »Introduction to Parallel Programming« 42

Cyclic Array Distributions
Task Mapping and Load Balancing

Alternatively, the array distribution is applied cyclically , with 1 ≤ nc ≤ n/p
being the number of cycles.

For the one-dimensional array distribution, the n rows/columns will be divided
into nc groups of n/nc contiguous rows/columns. Each of these groups is then
divided using the default array distribution, e.g. processor pi will hold
rows/columns(

j
n

nc
+ i · n

ncp

)
. . .

(
j

n

nc
+ (i + 1) · n

ncp
− 1
)

for 0 ≤ j < nc:

p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

Kriemann, »Introduction to Parallel Programming« 42

Cyclic Array Distributions
Task Mapping and Load Balancing

For the two-dimensional case the cycles are applied to block rows and columns,
i.e. divide the rows and columns in blocks of size n/nc and apply the
two-dimensional distribution to each subblock, i.e. split each n/nc × n/nc block
into br × bc subblocks.

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

Remark
The cycle number nc may also be different for the rows and columns.

Kriemann, »Introduction to Parallel Programming« 43

Cyclic Array Distributions
Task Mapping and Load Balancing

For the two-dimensional case the cycles are applied to block rows and columns,
i.e. divide the rows and columns in blocks of size n/nc and apply the
two-dimensional distribution to each subblock, i.e. split each n/nc × n/nc block
into br × bc subblocks.

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

p0 p1

p2 p3

Remark
The cycle number nc may also be different for the rows and columns.

Kriemann, »Introduction to Parallel Programming« 43

Cyclic Array Distributions
Task Mapping and Load Balancing

Since the data or work for each processor is spread over the whole array (matrix),
an automatic load balancing is performed, reducing the chance for idling:

• for algorithms working on different parts of the data at different algorithms
steps, e.g. LU factorisation, and

• for algorithms with different costs per array entry.

Remark
For some algorithms, a randomisation of the block assignment may lead to an even
better load balancing.

Cyclic vs Block Cyclic Distribution
For nc = n, only

• a single row (column) in the one-dimensional case or
• a single matrix entry for the two-dimensional distribution

is cyclically assigned to a processor.
This is originally known as the cyclic distribution, whereas all other cases are
known as block cyclic distributions.

Kriemann, »Introduction to Parallel Programming« 44

Graph Partitioning
Task Mapping and Load Balancing

The task interaction of algorithms may often be represented by a sparse graph.
Furthermore, computations only apply to localised data. Typical examples are
mesh based algorithms, e.g. PDEs.

Example: Sparse Matrix-Vector Multiplication
Consider

−∆u = 0 in Ω = [0, 1]2

on a uniform grid discretised with a standard
5-point stencil, and vector updates computed as

x′ij := 4xij − xi−1,j − xi+1,j − xi,j−1 − xi,j+1
-1

-1

-1

-1
4

The interaction between all mesh nodes forms a graph, identical to the mesh
itself.

Kriemann, »Introduction to Parallel Programming« 45

Graph Partitioning
Task Mapping and Load Balancing

Applying a random distribution to the mesh nodes leads to a high amount of
communication, whereas using a localised distribution only creates interaction at
processor boundaries:

randomised localised

A localised distribution can be computed using graph partitioning .

Kriemann, »Introduction to Parallel Programming« 46

Graph Partitioning
Task Mapping and Load Balancing

Given a graph G = (V, E) a partitioning P = {V1, V2}, with
V1 ∩ V2 = ∅, #V1 ∼ #V2 and V = V1 ∪ V2, of V is sought, such that

#{(i, j) ∈ E : i ∈ V1 ∧ j ∈ V2} is minimal.

For a partitioning into more sets, graph partitioning may be applied
recursively.

A small number of connecting edges directly translates into a small
communication amount.

For the NP-hard graph partitioning problem various approximation algorithms
exist, e.g. based on breadth-first search or multilevel algorithms.

Kriemann, »Introduction to Parallel Programming« 47

Dynamic Mapping
Task Mapping and Load Balancing

Schemes for dynamic mapping are:

Master-Slave: A master process assignes work to slave processes (see
below),

Online Scheduling: Idle processes take tasks from a central work pool (same as
List scheduling),

Rebalancing: neighboured processes exchange tasks to rebalance work
load (mesh refinement)

Kriemann, »Introduction to Parallel Programming« 48

Parallel Algorithm Models
Parallel Algorithm Design

Parallel algorithms typically have a structure, which falls into one of the
following categories:

• Data-Parallel Model,
• Task-Graph Model,
• Work Pool Model,
• Mast-Slave Model or
• Pipeline Model

These algorithm structures often also induce data decomposition and processor
mapping.

Kriemann, »Introduction to Parallel Programming« 49

Data-Parallel Model
Parallel Algorithm Models

In the Data-Parallel Model tasks perform

• similar or equal operations on
• different data.

The tasks are typically statically mapped.

Often the algorithm can be split into several steps of data-parallel work.

Example: Dense Matrix-Vector Multiplication
Computing the product y = Ax using a row-wise
decomposition, each task is equal while working on
a different row of A.
void mul_vec (int n, double ∗ A, double ∗ x, double ∗ y) {

int my_row = get_row();
for (int j = 0; j < n; ++j)
y[my_row] += A[my_row∗n ∗ i] ∗ x[j];

}
A xy

=

Kriemann, »Introduction to Parallel Programming« 50

Task-Graph Model
Parallel Algorithm Models

In the Task-Graph Model the task dependency graph directly defines the
structure of the algorithm.

Often, the tasks work on large data sets, making task relocating expensive.
Processor mapping is therefore usually static.

Example: Sparse LU factorisation
For sparse matrices, nested dissection can be used to decompose the data for an
efficient parallel LU factorisation. In nested dissection, sub blocks of a sparse
matrix are recursively decoupled by an internal border , such that, after
reordering, large zero blocks result in the matrix.

void LU_nd (BlockMatrix & A) {
int id = my_id();

// compute local part
LU_nd(A(id, id));
solve_L(A(id, id), A(id, 2));
solve_U(A(id, id), A(2, id));
update(A(2, id), A(id, 2),

A(2, 2));
// factorise global part
if (id == local_master())
LU(A(2, 2));

}

0..3

0..3

2, 3

2, 3

3

2

0, 1

0, 1

1

0

Kriemann, »Introduction to Parallel Programming« 51

Work Pool Model
Parallel Algorithm Models

If the tasks can be cheaply relocated, e.g. involve little data, the Work Pool
Model may be used. Here, the set of tasks is dynamically mapped onto the
processors, e.g. the first free processor executes the first, not yet computed task.

Example: Chunk based Loop Parallelisation
If the cost per loop entry differs, the loop is split into chunks of a fixed size,
which are then dynamically mapped to the processors:
// function per index with unknown cost
double f (int i);

// computation per task
void compute_chunk (int start, int chunk_size, double ∗ array) {

for (int i = start; i < start + chunk_size; ++i)
array[i] = f(i);

}
// parallel computation of for loop
void parallel_for (int n, int chunk_size, double ∗ array) {

for (int i = 0; i < n; i += chunk_size)
spawn_task(compute_chunk(i, chunk_size, array);

}

The chunk size depends on the size of the array and the number of processors. It
may even be adapted during the computation, e.g. if the costs per chunk are

• too low (too much management overhead) or
• too high (bad load balancing).

Kriemann, »Introduction to Parallel Programming« 52

Master-Slave Model
Parallel Algorithm Models

The Master-Slave Model is similar to the work pool model but here, a dedicated
master process creates and assigns tasks to several slave processes.

Remark
In the work pool model, any process may create (spawn) new tasks!

Tasks may be created and mapped

a priori: if the task set and task sizes are known or
dynamically: if new tasks are created due to the result of previous task

computations.

The costs for managing the tasks at the master process may become a
bottleneck. Alternatively, the model may be applied recursively, e.g. with several
second-level masters managing a sub set of the tasks and slaves.

Example: Search Farm
A central server receives simultaneous search requests and assignes each request
to a special slave, actually computing the search result.

Kriemann, »Introduction to Parallel Programming« 53

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()f3()

f2()f2()f2()

f1()f1()f1()f1()

f0()

f0()f0()f0()f0()f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()f3()

f2()f2()f2()

f1()

f1()f1()f1()

f0()

f0()

f0()f0()f0()f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()f3()

f2()

f2()f2()

f1()

f1()

f1()f1()

f0()f0()

f0()

f0()f0()f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()

f3()

f2()

f2()

f2()

f1()f1()

f1()

f1()

f0()f0()f0()

f0()

f0()f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()

f3()

f2()f2()

f2()

f1()f1()f1()

f1()

f0()f0()f0()f0()

f0()

f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Pipeline Model
Parallel Algorithm Models

If the computation consists of several steps, where different computations are
performed successively on each item of an input data stream, the computations
may be executed in a pipeline.

The pipeline may work parallel w.r.t. the different computations or the input
stream (or both).

Example
For an input vector v ∈ Rn compute f3(f2(f1(f0(v)))).

f3()f3()

f2()f2()f2()

f1()f1()f1()f1()

f0()f0()f0()f0()f0()

f0() f0()

f1() f1()

f2() f2()

f3() f3()

v0v1v2v3v4v5v6v7

Kriemann, »Introduction to Parallel Programming« 54

Performance Metrics
and Complexity

Kriemann, »Introduction to Parallel Programming« 55

Speedup
Performance Metrics

As the runtime of an algorithm is usually the most interesting measure, the
following will focus on it. Another measure may be the memory consumption.

Let t(p) be the runtime of an algorithm on p processors of a parallel
system. If p = 1 then t(1) will denote the runtime of the sequential
algorithm.

The most known and used performance measure of a parallel algorithm is the
parallel Speedup:

S(p) := t(1)
t(p)

An optimal speedup is achieved, if t(p) = t(1)/p and hence

S(p) = p

In most cases however, some form of overhead exists in the parallel algorithm,
e.g. due to sub-optimal load balancing, which prevents an optimal speedup. This
overhead to(p) is given by

to(p) = pt(p)− t(s)

Kriemann, »Introduction to Parallel Programming« 56

Amdahl’s Law
Performance Metrics

Most parallel algorithm also contain some sequential part, i.e. where not all
processors may be used.

Let 0 ≤ cs ≤ 1 denote this sequential fraction of the computation. Assuming the
same algorithm for all p, one gets

t(p) = cst(1) + (1− cs)
p

t(1)

This leads to
S(p) = 1

cs + 1−cs
p

which is also known as Amdahl’s Law (see Amdahl 1967) and severely limits the
maximal speedup by the sequential part of the parallel algorithm:

lim
p→∞

S(p) = 1
cs

4 16 64 256 1024 4096 16384 65536
of processors

20

40

60

80

100

S
pe

ed
up

cs = 1.0%

cs = 2.5%

cs = 5.0%

cs = 10.0%

Kriemann, »Introduction to Parallel Programming« 57

Gustafson’s Law
Performance Metrics

In Amdahl’s Law the problem size is fixed, and only p is increased. In practise
however, more computing resources usually lead to larger problems computed.

Assume that each processor handles a constant sized (sub-) problem, which costs
time Tc to compute and let Ts denote the time for the remaining sequential part.
Then we have

t(p) = Ts + Tc

and a sequential runtime for the same problem of

t(1) = Ts + pTc

With cs = Ts/(Ts + Tc) the speedup is given by

S(p) = cs + p(1− cs)
= p− cs(p− 1)

which is known as Gustafson’s Law (see
Gustafson 1988).

10000 20000 30000 40000 50000 60000
of processors

10000

20000

30000

40000

50000

60000

S
pe

ed
up

cs = 10%

cs = 25%

cs = 50%

cs = 75%

Kriemann, »Introduction to Parallel Programming« 58

Example: Parallel Sum
Performance Metrics

Summing up n numbers sequentially takes O (n) time.
double sum1 (int i1, int i2, double ∗ x) {

if (i2− i1 == 1)
return x[i1];

else {
double s1 = spawn_task(sum(i1, (i1+i2)/2, x));
double s2 = spawn_task(sum((i1+i2)/2, i2, x));

return s1+s2;
}

}

The parallel algorithm can use p processors at the lower log n− log p levels,
resulting in O (n/p) runtime. At the first log p levels 1, 2, 4, . . . , p processors can
be utilised. Hence, the total runtime is

t(p) = O (n/p + log p)

O (log p) is the “sequential” part of the algorithm but if n/p ≥ log p the runtime
is dominated by the parallel part: t(p) = O (n/p). This yields an optimal
speedup:

S(p) = O
(

n

n/p

)
= O (p)

Finally, for p = n/2 the maximal speedup of O (n/ log n) is achieved.

Kriemann, »Introduction to Parallel Programming« 59

Example: Parallel Sum
Performance Metrics

Speedup of the parallel sum algorithm:

20 40 60 80 100 120
of processors

20

40

60

80

100

120

S
p
e
e
d
u
p

linear

n = 256

n = 1024

n = 4096

Kriemann, »Introduction to Parallel Programming« 60

Efficiency
Performance Metrics

Tightly coupled with speedup is Efficiency :

The parallel efficiency E(p) of an algorithm is defined as

E(p) = S(p)
p

= t(1)
pt(p) = 1

1 + to(p)
t(1)

Efficiency of the parallel sum algorithm:

20 40 60 80 100 120
of processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

n = 256

n = 1024

n = 4096

Kriemann, »Introduction to Parallel Programming« 61

Scalability
Performance Metrics

Taking a closer look at the parallel efficiency of the (distributed) parallel sum:

20 40 60 80 100 120
of processors

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

E(p) = 0.9

n = 256

n = 1024

n = 4096

n p = 8 p = 20 p = 60

256 0.88 0.71 0.35
1024 0.97 0.90 0.68
4096 0.99 0.98 0.90

Although, for a fixed n the efficiency drops with an increasing p, the same level
of efficiency can be maintained if p and n are increased simultaneously . Such
algorithms are called scalable.

Remark
The scalability of an algorithm strongly depends on the underlying parallel computer
system. Therefore, in principle both, the algorithm and the computer hardware, have to
be considered.

Kriemann, »Introduction to Parallel Programming« 62

Complexity Analysis
Performance Metrics and Complexity

For the theoretical analysis of sequential programs, the Random Access Machine
(RAM, see Cook and Reckhow 1973) model is used. It is based on

• an infinite memory with O (1) access time and
• a finite instruction set.

Practically all sequential computers are (finite) realisations of a RAM.

Using the RAM model, the complexity analysis of a program can be done
independent on an actual computer system, e.g. the loop
for (int i = 0; i < n; ++i)

a[i] := a[i] + 1;

has runtime O (n) on all sequential systems.

No such universal model exists for parallel computers!

Hence, the complexity analysis of parallel programs can only be done for a
specific computer, e.g. the runtime of the above loop may vary from O (n/p) to
O (n · p), depending on interconnect network.

Kriemann, »Introduction to Parallel Programming« 63

Complexity Analysis
Performance Metrics and Complexity

For the theoretical analysis of sequential programs, the Random Access Machine
(RAM, see Cook and Reckhow 1973) model is used. It is based on

• an infinite memory with O (1) access time and
• a finite instruction set.

Practically all sequential computers are (finite) realisations of a RAM.

Using the RAM model, the complexity analysis of a program can be done
independent on an actual computer system, e.g. the loop
for (int i = 0; i < n; ++i)

a[i] := a[i] + 1;

has runtime O (n) on all sequential systems.

No such universal model exists for parallel computers!

Hence, the complexity analysis of parallel programs can only be done for a
specific computer, e.g. the runtime of the above loop may vary from O (n/p) to
O (n · p), depending on interconnect network.

Kriemann, »Introduction to Parallel Programming« 63

PRAM
Complexity Analysis

But there exist models, which approximate actual computer systems and allow
hardware-independent analysis for programs.

For shared memory systems, the generalisation of the RAM is the Parallel RAM
(PRAM, see Fortune and Wyllie 1978), with

• an infinite memory with O (1) access time for all processors and
• a finite instruction set.

Using the PRAM model, the loop
for (int i = 0; i < n; ++i)

a[i] := a[i] + 1;

has a runtime of O (n/p) if each of the p processors handle n/p entries of the
array.

Remark
UMA systems are optimal realisations of a PRAM, whereas NUMA systems are only
approximations.

Kriemann, »Introduction to Parallel Programming« 64

BSP Machine
Complexity Analysis

For shared and distributed memory machines, a simplified model is the Bulk
Synchronous Parallel Machine (BSP Machine, see Valiant 1990), which is
defined by two parameters:

g : transfer cost for a single word through the network and
l : cost for a global synchronisation.

A BSP computation consists of several supersteps, each
having a

computation phase: compute on local data only,
communication phase: send and receive data,

synchronisation: synchronise global machine
The complexity of a single superstep has the form

w + h · g + l,

where w is the max. number of operations and h the max.
data size sent/received by each processor. The total work is
simply the sum over all supersteps.

Computation

Communication
Synchronisation

Computation

Communication
Synchronisation

Computation

Communication
Synchronisation

Kriemann, »Introduction to Parallel Programming« 65

BSP Machine
Complexity Analysis

Example: Distributed Parallel Sum

double par_sum (int n_loc, double ∗ x_loc) {
int p = bsp_nprocs(); // total proc. number
int id = bsp_id(); // local proc. id
double s_loc = 0.0;

// sum of local data
for (int i = 0; i < n_loc; ++i) s_loc += x_loc[i];

// sum up local data in log_2(p) steps
for (int i = 1; i < p; i ∗= 2) {
// send local sum to master
if (id % (2∗i) != 0) bsp_send(id−i, s_loc);

// synchronise (wait for communication)
sync();

// get remote data and update local sum
if (bsp_nmsgs() > 0) s_loc += bsp_get();

}
}

0

1

2

3

4

5

6

7

0+1

2+3

4+5

6+7

0..3

4..7

0..7

It the first step the local sum is computed in time O (n/p). In the following
log p steps, one number is send/received and the local sum updated. This yiels a
total complexity of

O

n/p + log p︸ ︷︷ ︸
computation

+ g · log p︸ ︷︷ ︸
communication

+ l · log p︸ ︷︷ ︸
synchronisation


Kriemann, »Introduction to Parallel Programming« 66

General Message Passing
Performance Metrics and Complexity

The BSP model is best suited for algorithms which can be decomposed into
global single steps.

Together with corresponding software libraries, it can tremendously simplify
parallel programming.

But idling may easily appear, e.g.

• if computations and data exchange only affect a local part in a superstep or
• if load is not optimally balanced.

Therefore, a more general model is considered, in which computations and
communication may be fully decoupled from all processors.

Kriemann, »Introduction to Parallel Programming« 67

General Message Passing
Performance Metrics and Complexity

Again, two parameters will define the parallel machine, but now they describe a
single communication:

ts: startup time for a data transfer (latency),
tw: time to transfer a single data word (inverse bandwidth)

Sending m words costs
ts + m · tw

In the BSP model all characteristics of the network, especially the topology, are
compressed into two parameters.

For the general message passing model such network properties have to be
considered for analysing algorithm complexity.

Kriemann, »Introduction to Parallel Programming« 68

General Message Passing
Performance Metrics and Complexity

As an example, we consider the one-to-all broadcast.

fully connected
ts + tw

Star
2(ts + tw)

2D-Mesh
2√p(ts + tw)

d-dim Hypercube
d(ts + tw) = log2 p

Fat Tree
2 log2(p)(ts + tw)

Kriemann, »Introduction to Parallel Programming« 69

General Message Passing
Performance Metrics and Complexity

Example: Distributed Parallel Sum

double par_sum (int n_loc, double ∗ x_loc) {
int p = get_nprocs(); // total proc. number
int id = get_id(); // local proc. id
double s_loc = 0.0;

// sum of local data
for (int i = 0; i < n_loc; ++i) s_loc += x_loc[i];

// sum up local data in log_2(p) steps
for (int i = 1; i < p; i ∗= 2) {
if (id % (2∗i) != 0) {
// send local sum to master and finish
send(id−i, s_loc);
break;

}
else {
// recieve remote sum and update local data
double s_rem = 0;

recv(id+i, s_rem);
s_loc += s_rem;

}
}

}

0

1

2

3

4

5

6

7

0+1

2+3

4+5

6+7

0..3

4..7

0..7

The complexity is again

O (n/p + log p + log p(ts + tw))

Kriemann, »Introduction to Parallel Programming« 70

Literature

A. Grama et al. (2003). Introduction to Parallel Computing, Second Edition. Pearson Education Limited.

Amdahl, G. (1967). “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”.
In: AFIPS Conference Proceedings, pp. 483–485.

Coffman, E.G., M.R. Garey, and D.S. Johnson (1978). “An application of bin-packing to multiprocessor
scheduling”. In: SIAM J. Comput. 7.1, pp. 1–17.

Cook, S. and R. Reckhow (1973). “Time Bounded Random Access Machines”. In: Journal of Computer and
Systems Sciences 7, pp. 354–375.

Fortune, S. and J. Wyllie (1978). “Parallelism in random access machines”. In: Proceedings of the tenth annual
ACM symposium on Theory of computing . San Diego, California, United States: ACM Press, pp. 114–118.

Garey, M.R. and D.S. Johnson (1979). Computers and Intractability, A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company.

Gustafson, John L. (1988). “Reevaluating Amdahl’s Law”. In: Communications of the ACM 31, pp. 532–533.

Sutter, Herb (2005). “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”. In: Dr.
Dobb’s Journal .

Valiant, L.G. (1990). “A bridging model for parallel computation”. In: Communications of the ACM 33.8,
pp. 103–111. issn: 0001-0782. doi: http://doi.acm.org/10.1145/79173.79181.

W.R. Stevens (1998). UNIX Network Programming, Volume 2: Interprocess Communications, Second Edition.
Prentice Hall.

Kriemann, »Introduction to Parallel Programming« 71

http://dx.doi.org/http://doi.acm.org/10.1145/79173.79181

	Introduction
	Why Go Parallel
	Lecture Topics

	Parallel Programming Platforms
	SIMD
	SPMD
	Shared-Memory Machines
	Distributed-Memory Machines
	Hybrid Systems

	Parallel Algorithm Design
	Tasks and DAGs
	Decomposition Techniques
	Task Mapping and Load Balancing
	Parallel Algorithm Models

	Performance Metrics and Complexity
	Performance Metrics
	Complexity Analysis
	General Message Passing

	Appendix
	Literature

