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Introduction

Problem
Fast solution of

Ax = b

with A ∈ CI×I being a matrix defined by a PDE or integral
operator in Ω ⊂ Rd.

Solution

1 Represent A as an H-matrix,

2 Factorise A = LU using LU decomposition,

3 Solve equation

Condition: do each step on a parallel machine with p processors
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Bisection

Block Structure

A11 A12

A21 A22

Algorithm

1 factorise A11 = L11U11, (Recursion)

2 solve A12 = L11U12 and A21 = L21U11, (involves matrix mult.)

3 update A22 = A22 − L21 · U12, (matrix mult.)

4 factorise A22 = L22L22 (Recursion)
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Bisection

Parallelisation on Shared Memory

Parallel Matrix Multiplication works with optimal Speedup

• order multiplications per block

• load-balancing on dense or low rank blocks

For LU factorisation: replace each sequential matrix multiplication
with parallel version.

Parallel Complexity of LU Factorisation

Due to recursion over all matrix blocks:

O
(

n log2 n

p
+ n log2 n

)

Only reduction of constant.
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Bisection

Numerical Results (Ω ⊂ R3, DLP)
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No. of Processors

  n = 43680
  n = 184040
  S(p) = p

SUN Sunfire 6800, UltraSparcIII+ with 900 MHz
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Direct Domain Decomposition

H-matrices based on Direct Domain Decomposition

Given: decomposition of Ω into p non-overlapping subdomains
Ω1, · · · ,Ωp and global interface Γ:

Ω

Γ

Ω0 Ω1

Ω2 Ω3

Ω0 Ω1 Ω2 Ω3 Γ

Ω0

Ω1

Ω2

Ω3

Γ

Assumption: decoupling of the indices by the interface, e.g. local
operator and local ansatz functions.
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Direct Domain Decomposition

LU Factorisation

0BBB@
A11 A1Γ

. . .
...

App ApΓ

AΓ1 . . . AΓp AΓΓ

1CCCA =

0BBB@
L11

. . .

Lpp

LΓ1 . . . LΓp LΓΓ

1CCCA
0BBB@

U11 U1Γ

. . .
...

Upp UpΓ

UΓΓ

1CCCA
On processor i:

1 factorise Aii = LiiUii, (seq. LU Fac.)

2 solve AiΓ = LiiUiΓ and AΓi = LΓiUii, (seq. Algo.)

3 compute and exchange LΓiUiΓ, (log p steps)

4 update AΓΓ = AΓΓ −
∑

i LΓiUiΓ, (seq. Matrix Mult.)

5 factorise AΓΓ = LΓΓLΓΓ (seq. LU Fac.)

Parallel Hierarchical Matrices 11/22



Direct Domain Decomposition

Complexity of LU Factorisation

• equal load of order n/p per subdomain,

• interface of minimal order w.r.t. dimension d:
• O

(
n
p

(d−1)/d
)

per subdomain and

• O
(
p1/dn(d−1)/d

)
for global interface

O
(

n log2 n

p
+ p1/dn(d−1)/d log2 n log p

)

Advantages/Disadvantages

+ small changes to sequential algorithm

− interface can be large (d = 3); limits parallel speedup
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Nested Dissection

H-matrices based on Nested Dissection
Given: hierarchical decomposition of Ω into 2 non-overlapping
subdomains and a local interface:

Ω

Ω0

Ω2

Ω3

Ω1

Again assuming decoupling of indices by local interface.
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Nested Dissection

Data Distribution
Mapping of processor set {1, . . . , p} onto matrix blocks follows
decomposition hierarchy:

{1, . . . , 4}

{1, 2}

{3, 4}

{1} (master)

{1}

{1}

{2}
{1}

{3}

{4}
{3}

Difference to Sequential Structure

Dense or low rank matrix blocks are not allowed on a level smaller
than log p.
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Nested Dissection

LU Factorisation
Using algorithm for direct domain decomposition for p = 2 but
now with recursion.

1 partition local P into P1, P2 and choose j such that i ∈ Pj ,

2 factorise Ajj = LjjUjj , (Recursion)

3 solve AjΓ = LjjUjΓ and AΓj = LΓjUjj , (with par. Mult.)

4 compute and exchange LΓjUjΓ with local master,

5 on local master: (sequential)

1 update AΓΓ = AΓΓ −
∑

j LΓjUjΓ,
2 factorise AΓΓ = LΓΓLΓΓ
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Nested Dissection

Complexity of LU Factorisation

• equal load per subdomain,

• minimal order w.r.t. d of local interface:

O
(

n log2 n

p
+ n(d−1)/d log2 n log p

)
without p1/d term.

Advantages/Disadvantages

+ partial parallelisation of the interface and therefore lower
complexity,

− more complicated algorithm with parallel solve and
multiplication
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Numerical Examples

Laplace in Ω = [0, 1]2
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  n = 14482, DD
  S(p) = p

AMD Opteron 2.4 GHz, Infiniband Interconnect
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Numerical Examples

Laplace in Ω = [0, 1]3
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Numerical Examples

Laplace in Ω = [0, 1]3
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