Parallel Hierarchical Matrices

Ronald Kriemann

joint work with L. Grasedyck and S. Le Borne

Max-Planck-Institute for Mathematics in the Sciences Leipzig

ALA2006

Düsseldorf July 24-27, 2006

Outline

(1) Introduction
(2) Bisection
(3) Direct Domain Decomposition
(4) Nested Dissection
(5) Numerical Examples

Outline

(1) Introduction
(2) Bisection

3 Direct Domain Decomposition
4) Nested Dissection
(5) Numerical Examples

Introduction

Problem

Fast solution of

$$
A x=b
$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^{d}$.

Introduction

Problem

Fast solution of

$$
A x=b
$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^{d}$.

Solution

(1) Represent A as an \mathcal{H}-matrix,
(2) Factorise $A=L U$ using LU decomposition,
(3) Solve equation

Introduction

Problem

Fast solution of

$$
A x=b
$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^{d}$.

Solution

(1) Represent A as an \mathcal{H}-matrix,
(2) Factorise $A=L U$ using LU decomposition,
(3) Solve equation

Condition: do each step on a parallel machine with p processors

Outline

(1) Introduction

(2) Bisection
(3) Direct Domain Decomposition
(4) Nested Dissection
(5) Numerical Examples

Bisection

Block Structure

A_{11}	A_{12}
A_{21}	A_{22}

Algorithm

(1) factorise $A_{11}=L_{11} U_{11}$,
(2) solve $A_{12}=L_{11} U_{12}$ and $A_{21}=L_{21} U_{11}$,
(3) update $A_{22}=A_{22}-L_{21} \cdot U_{12}$,
(4) factorise $A_{22}=L_{22} L_{22}$
(Recursion)
(involves matrix mult.)
(matrix mult.)
(Recursion)

Bisection

Parallelisation on Shared Memory

Parallel Matrix Multiplication works with optimal Speedup

- order multiplications per block
- load-balancing on dense or low rank blocks

For LU factorisation: replace each sequential matrix multiplication with parallel version.

Bisection

Parallelisation on Shared Memory

Parallel Matrix Multiplication works with optimal Speedup

- order multiplications per block
- load-balancing on dense or low rank blocks

For LU factorisation: replace each sequential matrix multiplication with parallel version.

Parallel Complexity of LU Factorisation

Due to recursion over all matrix blocks:

$$
\mathcal{O}\left(\frac{n \log ^{2} n}{p}+n \log ^{2} n\right)
$$

Only reduction of constant.

Bisection

Numerical Results ($\Omega \subset \mathbb{R}^{3}$, DLP)

SUN Sunfire 6800, UltraSparclll+ with 900 MHz

Outline

(1) Introduction

(2) Bisection
(3) Direct Domain Decomposition
(4) Nested Dissection
(5) Numerical Examples

Direct Domain Decomposition

\mathcal{H}-matrices based on Direct Domain Decomposition

Given: decomposition of Ω into p non-overlapping subdomains $\Omega_{1}, \cdots, \Omega_{p}$ and global interface Γ :

Assumption: decoupling of the indices by the interface, e.g. local operator and local ansatz functions.

Direct Domain Decomposition

LU Factorisation
$\left(\begin{array}{cccc}A_{11} & & & A_{1 \Gamma} \\ & \ddots & & \vdots \\ & & A_{p p} & A_{p \Gamma} \\ A_{\Gamma 1} & \ldots & A_{\Gamma p} & A_{\Gamma \Gamma}\end{array}\right)=\left(\begin{array}{cccc}L_{11} & & & \\ & \ddots & & \\ & & L_{p p} & \\ L_{\Gamma 1} & \ldots & L_{\Gamma p} & L_{\Gamma \Gamma}\end{array}\right)\left(\begin{array}{cccc}U_{11} & & & U_{1 \Gamma} \\ & \ddots & & \vdots \\ & & U_{p p} & U_{p \Gamma} \\ & & & U_{\Gamma \Gamma}\end{array}\right)$
On processor i :
(1) factorise $A_{i i}=L_{i i} U_{i i}$,
(seq. LU Fac.)
(2) solve $A_{i \Gamma}=L_{i i} U_{i \Gamma}$ and $A_{\Gamma i}=L_{\Gamma i} U_{i i}$, (seq. Algo.)
(3) compute and exchange $L_{\Gamma i} U_{i \Gamma}$,
($\log p$ steps)
(4) update $A_{\Gamma \Gamma}=A_{\Gamma \Gamma}-\sum_{i} L_{\Gamma i} U_{i \Gamma}$, (seq. Matrix Mult.)
(5) factorise $A_{\Gamma \Gamma}=L_{\Gamma \Gamma} L_{\Gamma \Gamma}$

Direct Domain Decomposition

Complexity of LU Factorisation

- equal load of order n / p per subdomain,
- interface of minimal order w.r.t. dimension d :
- $\mathcal{O}\left(\frac{n}{p}^{(d-1) / d}\right)$ per subdomain and
- $\mathcal{O}\left(p^{1 / d} n^{(d-1) / d}\right)$ for global interface

$$
\mathcal{O}\left(\frac{n \log ^{2} n}{p}+p^{1 / d} n^{(d-1) / d} \log ^{2} n \log p\right)
$$

Direct Domain Decomposition

Complexity of LU Factorisation

- equal load of order n / p per subdomain,
- interface of minimal order w.r.t. dimension d :
- $\mathcal{O}\left(\frac{n}{p}^{(d-1) / d}\right)$ per subdomain and
- $\mathcal{O}\left(p^{1 / d} n^{(d-1) / d}\right)$ for global interface

$$
\mathcal{O}\left(\frac{n \log ^{2} n}{p}+p^{1 / d} n^{(d-1) / d} \log ^{2} n \log p\right)
$$

Advantages/Disadvantages

+ small changes to sequential algorithm
- interface can be large $(d=3)$; limits parallel speedup

Outline

(1) Introduction

(2) Bisection
(3) Direct Domain Decomposition
(4) Nested Dissection
(5) Numerical Examples

Nested Dissection

\mathcal{H}-matrices based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

Nested Dissection

\mathcal{H}-matrices based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

Nested Dissection

\mathcal{H}-matrices based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

Nested Dissection

Data Distribution

Mapping of processor set $\{1, \ldots, p\}$ onto matrix blocks follows decomposition hierarchy:

Nested Dissection

Data Distribution

Mapping of processor set $\{1, \ldots, p\}$ onto matrix blocks follows decomposition hierarchy:

$\{1\}$ (master)

Nested Dissection

Data Distribution

Mapping of processor set $\{1, \ldots, p\}$ onto matrix blocks follows decomposition hierarchy:

\{3\}
\{1\}

Nested Dissection

Data Distribution

Mapping of processor set $\{1, \ldots, p\}$ onto matrix blocks follows decomposition hierarchy:

\{3\}
$\{1\}$

Difference to Sequential Structure

Dense or low rank matrix blocks are not allowed on a level smaller than $\log p$.

Nested Dissection

LU Factorisation

Using algorithm for direct domain decomposition for $p=2$ but now with recursion.
(1) partition local P into P_{1}, P_{2} and choose j such that $i \in P_{j}$,
(2) factorise $A_{j j}=L_{j j} U_{j j}$, (Recursion)
(3) solve $A_{j \Gamma}=L_{j j} U_{j \Gamma}$ and $A_{\Gamma j}=L_{\Gamma j} U_{j j}$, (with par. Mult.)
(4) compute and exchange $L_{\Gamma j} U_{j \Gamma}$ with local master,
(5) on local master:
(sequential)
(1) update $A_{\Gamma \Gamma}=A_{\Gamma \Gamma}-\sum_{j} L_{\Gamma j} U_{j \Gamma}$,
(2) factorise $A_{\Gamma \Gamma}=L_{\Gamma \Gamma} L_{\Gamma \Gamma}$

Nested Dissection

Complexity of LU Factorisation

- equal load per subdomain,
- minimal order w.r.t. d of local interface:

$$
\mathcal{O}\left(\frac{n \log ^{2} n}{p}+n^{(d-1) / d} \log ^{2} n \log p\right)
$$

without $p^{1 / d}$ term.

Nested Dissection

Complexity of LU Factorisation

- equal load per subdomain,
- minimal order w.r.t. d of local interface:

$$
\mathcal{O}\left(\frac{n \log ^{2} n}{p}+n^{(d-1) / d} \log ^{2} n \log p\right)
$$

without $p^{1 / d}$ term.

Advantages/Disadvantages

+ partial parallelisation of the interface and therefore lower complexity,
- more complicated algorithm with parallel solve and multiplication

Outline

(1) Introduction

(2) Bisection
(3) Direct Domain Decomposition
(4) Nested Dissection
(5) Numerical Examples

Numerical Examples

Laplace in $\Omega=[0,1]^{2}$

AMD Opteron 2.4 GHz, Infiniband Interconnect

Numerical Examples

Laplace in $\Omega=[0,1]^{2}$

AMD Opteron 2.4 GHz, Infiniband Interconnect

Numerical Examples

Laplace in $\Omega=[0,1]^{3}$

AMD Opteron 2.4 GHz, Infiniband Interconnect

Numerical Examples

Laplace in $\Omega=[0,1]^{3}$

AMD Opteron 2.4 GHz, Infiniband Interconnect

