Parallel Hierarchical Matrices

Ronald Kriemann

joint work with L. Grasedyck and S. Le Borne

Max-Planck-Institute for Mathematics in the Sciences Leipzig

ALA2006

Düsseldorf July 24-27, 2006

3 Direct Domain Decomposition

4 Nested Dissection

6 Numerical Examples

2 Bisection

3 Direct Domain Decomposition

4 Nested Dissection

6 Numerical Examples

Problem

Fast solution of

$$Ax = b$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^d$.

Problem

Fast solution of

$$Ax = b$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^d$.

Solution

- **1** Represent A as an \mathcal{H} -matrix,
- **2** Factorise A = LU using LU decomposition,
- Solve equation

Problem

Fast solution of

$$Ax = b$$

with $A \in \mathbb{C}^{I \times I}$ being a matrix defined by a PDE or integral operator in $\Omega \subset \mathbb{R}^d$.

Solution

- **1** Represent A as an \mathcal{H} -matrix,
- **2** Factorise A = LU using LU decomposition,
- Solve equation

Condition: do each step on a parallel machine with p processors

B Direct Domain Decomposition

A Nested Dissection

6 Numerical Examples

Bisection

Block Structure

A_{11}	A_{12}
A_{21}	A_{22}

Algorithm

- **1** factorise $A_{11} = L_{11}U_{11}$, 2 solve $A_{12} = L_{11}U_{12}$ and $A_{21} = L_{21}U_{11}$, (involves matrix mult.) **3** update $A_{22} = A_{22} - L_{21} \cdot U_{12}$,
- 4 factorise $A_{22} = L_{22}L_{22}$

(Recursion) (matrix mult.) (Recursion)

Parallelisation on Shared Memory

Parallel Matrix Multiplication works with optimal Speedup

- order multiplications per block
- load-balancing on dense or low rank blocks

For LU factorisation: replace each sequential matrix multiplication with parallel version.

Parallelisation on Shared Memory

Parallel Matrix Multiplication works with optimal Speedup

- order multiplications per block
- · load-balancing on dense or low rank blocks

For LU factorisation: replace each sequential matrix multiplication with parallel version.

Parallel Complexity of LU Factorisation

Due to recursion over all matrix blocks:

$$\mathcal{O}\left(\frac{n\log^2 n}{p} + n\log^2 n\right)$$

Only reduction of constant.

Bisection

Numerical Results ($\Omega \subset \mathbb{R}^3$, DLP)

Parallel Hierarchical Matrices

2 Bisection

3 Direct Domain Decomposition

A Nested Dissection

5 Numerical Examples

$\mathcal H\text{-matrices}$ based on Direct Domain Decomposition

Given: decomposition of Ω into p non-overlapping subdomains $\Omega_1, \dots, \Omega_p$ and global interface Γ :

Assumption: decoupling of the indices by the interface, e.g. local operator and local ansatz functions.

LU Factorisation

$$\begin{pmatrix} A_{11} & & A_{1\Gamma} \\ & \ddots & & \vdots \\ & & A_{pp} & A_{p\Gamma} \\ A_{\Gamma 1} & \dots & A_{\Gamma p} & A_{\Gamma \Gamma} \end{pmatrix} = \begin{pmatrix} L_{11} & & & \\ & \ddots & & \\ & & L_{pp} & \\ L_{\Gamma 1} & \dots & L_{\Gamma p} & L_{\Gamma\Gamma} \end{pmatrix} \begin{pmatrix} U_{11} & & & U_{1\Gamma} \\ & \ddots & & \vdots \\ & & U_{pp} & U_{p\Gamma} \\ & & & U_{\Gamma\Gamma} \end{pmatrix}$$

On processor *i*:

1 factorise
$$A_{ii} = L_{ii}U_{ii}$$
,(seq. LU Fac.)2 solve $A_{i\Gamma} = L_{ii}U_{i\Gamma}$ and $A_{\Gamma i} = L_{\Gamma i}U_{ii}$,(seq. Algo.)3 compute and exchange $L_{\Gamma i}U_{i\Gamma}$,(log p steps)4 update $A_{\Gamma\Gamma} = A_{\Gamma\Gamma} - \sum_i L_{\Gamma i}U_{i\Gamma}$,(seq. Matrix Mult.)5 factorise $A_{\Gamma\Gamma} = L_{\Gamma\Gamma}L_{\Gamma\Gamma}$ (seq. LU Fac.)

Complexity of LU Factorisation

- equal load of order n/p per subdomain,
- interface of minimal order w.r.t. dimension d:
 - $\mathcal{O}\left(\frac{n}{p}^{(d-1)/d}\right)$ per subdomain and
 - $\mathcal{O}\left(p^{1/d}n^{(d-1)/d}\right)$ for global interface

$$\mathcal{O}\left(\frac{n\log^2 n}{p} + p^{1/d}n^{(d-1)/d}\log^2 n\log p\right)$$

Complexity of LU Factorisation

- equal load of order n/p per subdomain,
- interface of minimal order w.r.t. dimension d:
 - $\mathcal{O}\left(\frac{n}{p}^{(d-1)/d}\right)$ per subdomain and
 - $\mathcal{O}\left(p^{1/d}n^{(d-1)/d}\right)$ for global interface

$$\mathcal{O}\left(\frac{n\log^2 n}{p} + p^{1/d}n^{(d-1)/d}\log^2 n\log p\right)$$

Advantages/Disadvantages

- + small changes to sequential algorithm
- interface can be large (d = 3); limits parallel speedup

2 Bisection

3 Direct Domain Decomposition

4 Nested Dissection

5 Numerical Examples

$\mathcal H\text{-}\mathbf{matrices}$ based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

$\mathcal H\text{-}\mathbf{matrices}$ based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

$\mathcal H\text{-}\mathbf{matrices}$ based on Nested Dissection

Given: hierarchical decomposition of Ω into 2 non-overlapping subdomains and a local interface:

Again assuming decoupling of indices by local interface.

Mapping of processor set $\{1,\ldots,p\}$ onto matrix blocks follows decomposition hierarchy:

$$\{1,\ldots,4\}$$

Mapping of processor set $\{1,\ldots,p\}$ onto matrix blocks follows decomposition hierarchy:

Mapping of processor set $\{1,\ldots,p\}$ onto matrix blocks follows decomposition hierarchy:

Mapping of processor set $\{1,\ldots,p\}$ onto matrix blocks follows decomposition hierarchy:

Difference to Sequential Structure

Dense or low rank matrix blocks are not allowed on a level smaller than $\log p.$

٩

LU Factorisation

Using algorithm for direct domain decomposition for p=2 but now with recursion.

1 partition local P into P_1, P_2 and choose j such that $i \in P_j$,

2 factorise
$$A_{jj} = L_{jj}U_{jj}$$
, (Recursion)

- **3** solve $A_{j\Gamma} = L_{jj}U_{j\Gamma}$ and $A_{\Gamma j} = L_{\Gamma j}U_{jj}$, (with par. Mult.)
- **4** compute and exchange $L_{\Gamma j}U_{j\Gamma}$ with local master,
- 6 on local master:

(sequential)

1) update
$$A_{\Gamma\Gamma} = A_{\Gamma\Gamma} - \sum_j L_{\Gamma j} U_{j\Gamma}$$

2 factorise $A_{\Gamma\Gamma} = L_{\Gamma\Gamma}L_{\Gamma\Gamma}$

Complexity of LU Factorisation

- equal load per subdomain,
- minimal order w.r.t. d of local interface:

$$\mathcal{O}\left(\frac{n\log^2 n}{p} + n^{(d-1)/d}\log^2 n\log p\right)$$

without $p^{1/d}$ term.

Complexity of LU Factorisation

- equal load per subdomain,
- minimal order w.r.t. d of local interface:

$$\mathcal{O}\left(\frac{n\log^2 n}{p} + n^{(d-1)/d}\log^2 n\log p\right)$$

without $p^{1/d}$ term.

Advantages/Disadvantages

- + partial parallelisation of the interface and therefore lower complexity,
- more complicated algorithm with parallel solve and multiplication

2 Bisection

3 Direct Domain Decomposition

A Nested Dissection

5 Numerical Examples

Laplace in $\Omega = [0,1]^2$

AMD Opteron 2.4 GHz, Infiniband Interconnect

AMD Opteron 2.4 GHz, Infiniband Interconnect

Parallel Hierarchical Matrices

Numerical Examples

Laplace in $\Omega = [0, 1]^3$

AMD Opteron 2.4 GHz, Infiniband Interconnect

Laplace in $\Omega = [0, 1]^3$

Parallel Hierarchical Matrices