Parallel \mathcal{H} -Arithmetic

On Many-Core Systems and Beyond

Ronald Kriemann MPI MIS

European ExaScale Applications Workshop

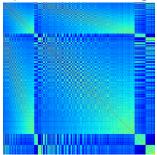
School of Mathematics, University of Manchester

2016-10-11/12

In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

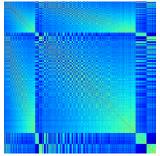
In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

Example: Helmholtz Integral Equation



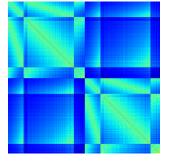
In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

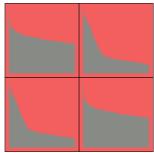
Example: Helmholtz Integral Equation



In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

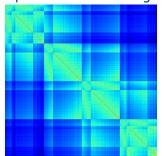
Example: Helmholtz Integral Equation

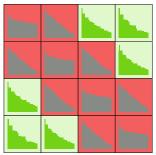




In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

Example: Helmholtz Integral Equation

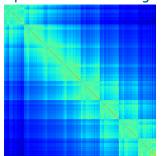


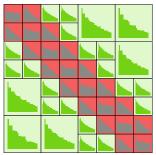


Subblocks $t \times s$ of M with rank k approximations are represented by $M|_{t \times s} = A \cdot B^T$, with $\#t \times k$ -matrix A and $\#s \times k$ -matrix B.

In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

Example: Helmholtz Integral Equation

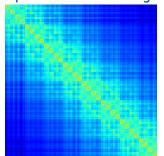




Subblocks $t \times s$ of M with rank k approximations are represented by $M|_{t \times s} = A \cdot B^T$, with $\#t \times k$ -matrix A and $\#s \times k$ -matrix B.

In hierarchical matrices (\mathcal{H} -matrices) the indexset I of a given dense matrix $M^{I\times I}$ is reordered to expose the (numerical) low-rank structure of subblocks of M.

Example: Helmholtz Integral Equation



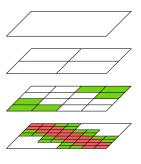


Subblocks $t \times s$ of M with rank k approximations are represented by $M|_{t \times s} = A \cdot B^T$, with $\#t \times k$ -matrix A and $\#s \times k$ -matrix B.

(Recursive) Block Structure

The *clustering* (reordering) defines a hierarchical partitioning for $I \times I$.

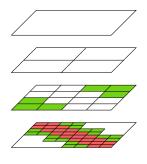
Only blocks of the partition are represented in the \mathcal{H} -matrix, either as a dense matrix, a low-rank matrix or a block matrix (with further subblocks).



(Recursive) Block Structure

The *clustering* (reordering) defines a hierarchical partitioning for $I \times I$.

Only blocks of the partition are represented in the \mathcal{H} -matrix, either as a dense matrix, a low-rank matrix or a block matrix (with further subblocks).



\mathcal{H} -Arithmetic

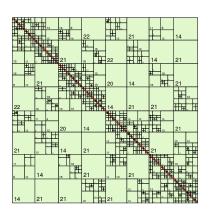
Complete matrix arithmetic is possible, e.g., addition, multiplication, inversion, LU factorization (recursive, block-wise operations)

 \mathcal{H} -arithmetic is *approximative*. Low-rank subblocks are *truncated* to rank k (precision ε) after each (sub-) operation.

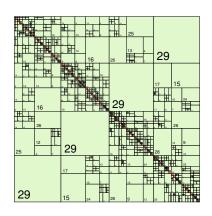
 \mathcal{H} -arithmetic has $\mathcal{O}(n\log^{\alpha}n)$ complexity.

No pivoting possible due to fixed block structure.

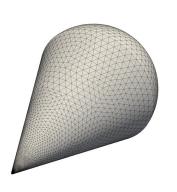
Structure depends on Geometry

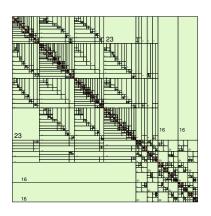


Structure depends on Geometry

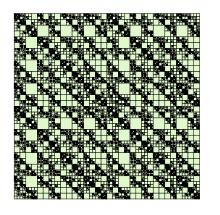


Structure depends on Geometry





Structure depends on Geometry/Problem



Kriemann, »Parallel H-Arithmetic«

5

All $\mathcal{H}\text{-matrix}$ algorithms are implemented in the library HLIBpro.

HLIBpro

- HLIBpro implements an extensive set of ${\cal H}$ -matrix algorithms,
- was developed using C++ since the beginning,
- various parallel APIs used in the past (Pthreads, MPI, OpenMP).

On multi-/many-core CPUs *Threading Building Blocks* (TBB) is used for parallelisation.

TBB

- open source software library for C++
- implements various forms of loop-parallelisation
- is based on tasks and exposes this for task based computations,
- permits seemless integration with C++11 via lambda functions.

OpenMP?

- Tasks not available in OpenMP 2.5 when task based \mathcal{H} -arithmetic was developed,
- not all C++ compilers fully support(-ed?) OpenMP,
- Tasks and task dependencies are fixed at compile time at source code level (TBB: at runtime).

OpenMP?

- Tasks not available in OpenMP 2.5 when task based \mathcal{H} -arithmetic was developed,
- not all C++ compilers fully support(-ed?) OpenMP,
- Tasks and task dependencies are fixed at compile time at source code level (TBB: at runtime).

Problems

 Known deadlock issue in TBB with recursive parallelisation and mutices in inner loop

```
task APPLY_UPDATE(U,M) lock mutex(M); spawn sub task applying U to M; unlock mutex(M);
```

OpenCL/CUDA?

- ullet ${\cal H}$ -matrix algorithms work on an extremely heterogenous data
 - up to several million sub blocks
 - block sizes from 10..10⁶,
 - different rank per block
- low-rank truncation involves QR ($\mathcal{O}(n)$), SVD ($\mathcal{O}(k)$), gemm ($\mathcal{O}(n)$) up to several thousand times per block,
- for batch operations: need to fix rank/block sizes, loose memory eff./accuracy,
- can efficiently be used for evaluation of quadrature rules during construction.

Algorithm

All subblocks can be built independently.

```
procedure BUILD(t \times s)

if t \times s is leaf then

build dense/low-rank block

else

parallel for all sub blocks t' \times s' do

build(t' \times s');
```

Algorithm

All subblocks can be built independently.

```
mat_build ( Block * b ) {
  parallel_for( blocked_range2d( 0, nbrows, 0, nbcols ),
    [...] ( const blocked_range2d & r ) {
    for ( auto         i = r.rows().begin(); i != r.rows().end(); ++i )
        for ( auto         j = r.cols().begin(); j != r.cols().end(); ++j )
        mat_build( b->son( i, j ) ); } ); }
```

Scheduling by TBB respects CPU core locality.

Algorithm

All subblocks can be built independently.

```
mat_build ( Block * b ) {
  parallel_for( blocked_range2d( 0, nbrows, 0, nbcols ),
    [...] ( const blocked_range2d & r ) {
    for ( auto         i = r.rows().begin();         i != r.rows().end(); ++i )
        for ( auto         j = r.cols().begin();         j != r.cols().end(); ++j )
        mat_build( b->son( i, j ) );    }); }
```

Scheduling by TBB respects CPU core locality.

Numerical Results (Sequential)

n	t	$\frac{t}{n \log n}$	Mem	$\frac{Mem}{n\log n}$
	in sec		in MB	
10,720	46.4	3.24	186	1.30
42,880	207.8	3.15	904	1.37
171,520	872.6	2.93	4,290	1.44
686,080	3689.4	2.77	19.810	1.49

Algorithm

All subblocks can be built independently.

```
mat_build ( Block * b ) {
  parallel_for( blocked_range2d( 0, nbrows, 0, nbcols ),
    [...] ( const blocked_range2d & r ) {
    for ( auto         i = r.rows().begin(); i != r.rows().end(); ++i )
        for ( auto         j = r.cols().begin(); j != r.cols().end(); ++j )
        mat_build( b->son( i, j ) ); } ); }
```

Scheduling by TBB respects CPU core locality.

Numerical Results (Parallel)

	Cores	Time	Speedup
E7-8857	12	69.4s	10.23
	48	18.0s	39.36
KNL 7210	64	24.0s	87.89

The \mathcal{H} -LU factorisation A = LU is defined by:

$$A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} = \begin{pmatrix} L_{00} & \\ L_{10} & L_{11} \end{pmatrix} \cdot \begin{pmatrix} U_{00} & U_{01} \\ & U_{11} \end{pmatrix},$$

which leads to the following equations and recursive algorithm

$$A_{00} = L_{00}U_{00}$$

$$A_{01} = L_{00}U_{01}$$

$$A_{10} = L_{10}U_{00}$$

$$A_{11} = A_{11} - L_{10}U_{01}$$

$$A_{11} = L_{11}U_{11}$$

```
procedure LU(A, L, U)

if A is block matrix then

LU(A_{00}, L_{00}, U_{00});

SOLVELL(A_{01}, L_{00}, U_{01});

SOLVEUR(A_{10}, L_{10}, U_{00});

MULTIPLY(-1, L_{10}, U_{01}, A_{11});

LU(A_{11}, L_{11}, U_{11});

else

A = LU;
```

The \mathcal{H} -LU factorisation A=LU is defined by:

$$A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} = \begin{pmatrix} L_{00} & \\ L_{10} & L_{11} \end{pmatrix} \cdot \begin{pmatrix} U_{00} & U_{01} \\ & U_{11} \end{pmatrix},$$

which leads to the following equations and recursive algorithm

```
\begin{array}{lll} A_{00} = L_{00} U_{00} & \text{procedure } \mathrm{LU}(A,L,U) \\ \mathrm{if} & A \text{ is block matrix } \mathbf{then} \\ \mathrm{LU}(A_{00},L_{00},U_{00}); \\ A_{10} = L_{10} U_{00} & \mathrm{SolveLL}(A_{01},L_{00},U_{01}); \\ A_{11} = A_{11} - L_{10} U_{01} & \mathrm{Multiply}(-1,L_{10},U_{01},A_{11}); \\ A_{11} = L_{11} U_{11} & \mathrm{else} \\ & A = L U; \end{array}
```

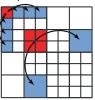
Recursive algorithm is not optimal for parallelisation.

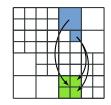
Parallel \mathcal{H} -LU

Tasks for sub-operations together with dependencies between them are defined, yielding a DAG:

```
procedure LU( A|_{t\times t}, L|_{t\times t}, U|_{t\times t} )
   if A is block matrix then
       for i \in \{0, 1\} do
          \mathsf{task}(\mathsf{LU}(\ A|_{t_i \times t_i}\ ));\ \ell := \mathsf{level}(t_i);
           for s \in T^{\ell}(I), s >_I t_i do
              if A|_{s \times t_i} is not blocked then
                  task(Solveur(A|_{s \times t_i}, L|_{s \times t_i}, U|_{t_i \times t_i}));
              if A|_{t_s \times s} is not blocked then
                  task(Solvell( A|_{t_i \times s}, L|_{t_i \times t_i}, U|_{t_i \times s} ));
           for s, r \in T^{\ell}(I), s, r >_I t_i do
              if L|_{r\times t_s}, U_{t_s\times s} or A|_{r\times s} is not blocked then
                  task(Multiply(-1, L_{r \times t_i}, U_{t_i \times s}, A|_{r \times s}));
   else
       task(A := LU);
```

Dependencies:



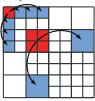


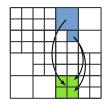
Parallel \mathcal{H} -LU

Tasks for sub-operations together with dependencies between them are defined, yielding a DAG:

```
class LU : public tbb::task {
  task * execute () {
    factorize( A );
    for ( auto M : matrices_right_of( A ) )
      if ( solve_task(M)->dec_ref_count() == 0 )
        spawn( solve_task(M) );
} };
class SolveLL : public tbb::task {
  task * execute () {
    solve( L, X );
    for ( auto M : matrices_below( X ) )
      if ( update_task(M)->dec_ref_count() == 0 )
        spawn( update_task(M) );
} };
```

Dependencies:





Numerical Results (Sequential)

n	t	$\frac{t}{n\log^3 n}$	Mem	$\frac{Mem}{n\log n}$
	in sec		in MB	
2,680	5.9	1.49	30	0.98
10,720	48.4	1.88	182	1.27
42,880	266.9	1.71	887	1.34
171,520	1636.2	1.81	4,220	1.41
686,080	8835.4	1.77	20,010	1.50
				(E7-8857)

Numerical Results (Sequential)

n	t	$\frac{t}{n\log^3 n}$	Mem	$\frac{Nlem}{n\log n}$
	in sec		in MB	
2,680	5.9	1.49	30	0.98
10,720	48.4	1.88	182	1.27
42,880	266.9	1.71	887	1.34
171,520	1636.2	1.81	4,220	1.41
686,080	8835.4	1.77	20,010	1.50
				(F7.8857)

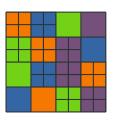
Numerical Results (Parallel)

Parallel				
	#Cores	Time	Speedup	
E7-8857	12	132.6s	10.89	
	48	38.8s	37.24	
KNL 7210	64	144.2s	59.60	

Simple Arithmetic

Algorithms with (mostly) independent operations are implemented using MPI (construction, MVM, addition).

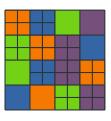
Problem: load balancing. Cost per block is only roughly known (depends on rank).



Simple Arithmetic

Algorithms with (mostly) independent operations are implemented using MPI (construction, MVM, addition).

Problem: load balancing. Cost per block is only roughly known (depends on rank).

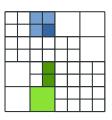


\mathcal{H} -LU factorization

Communication pattern similar to dense LU.

However, subblocks are used on different levels of the hierarchy.

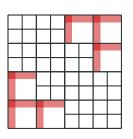
Wanted: bring task approach to distributed memory with efficient task scheduling (handling communication).



Handling of Large Blocks

For large low-rank blocks $M|_{t\times s}=A\cdot B^T, \min\{\#t,\#s\}\geq n_{large},$ $n_{large}>n/p$ need further parallelization of A and B.

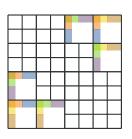
```
procedure TRUNCATE(A, B)
[Q_A, R_A] = \operatorname{qr}(A);
[Q_B, R_B] = \operatorname{qr}(B);
[U, S, V] = \operatorname{svd}(R_A R_B^T);
k' := \operatorname{new\_rank}(S);
A' := (Q_A U S)(1 : k', :);
B' := (Q_B V)(1 : k', :);
```



Handling of Large Blocks

For large low-rank blocks $M|_{t\times s}=A\cdot B^T, \min\{\#t,\#s\}\geq n_{large},$ $n_{large}>n/p$ need further parallelization of A and B.

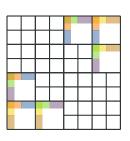
```
procedure TRUNCATE(A, B)
[Q_A, R_A] = \operatorname{qr}(A);
[Q_B, R_B] = \operatorname{qr}(B);
[U, S, V] = \operatorname{svd}(R_A R_B^T);
k' := \operatorname{new\_rank}(S);
A' := (Q_A U S)(1 : k', :);
B' := (Q_B V)(1 : k', :);
```



Handling of Large Blocks

For large low-rank blocks $M|_{t\times s}=A\cdot B^T, \min\{\#t,\#s\}\geq n_{large},$ $n_{large}>n/p$ need further parallelization of A and B.

```
procedure TRUNCATE(A, B)
[Q_A, R_A] = \operatorname{qr}(A);
[Q_B, R_B] = \operatorname{qr}(B);
[U, S, V] = \operatorname{svd}(R_A R_B^T);
k' := \operatorname{new\_rank}(S);
A' := (Q_A U S)(1 : k', :);
B' := (Q_B V)(1 : k', :);
```



Introduces additional synchronization (e.g., during QR).