Parallel -Arithmetic

On Many-Core Systems and Beyond

Ronald Kriemann
MPI MIS

European ExaScale Applications Workshop

School of Mathematics,
University of Manchester

2016-10-11/12

Hierarchical Matrices

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank
structure of subblocks of M.

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank

structure of subblocks of M.
Example: Helmholtz Integral Equation

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank

structure of subblocks of M.
Example: Helmholtz Integral Equation

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank

structure of subblocks of M.
Example: Helmholtz Integral Equation

Kriemann, »Parallel H-Arithmetic«

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank

structure of subblocks of M.

Example: Helmholtz Integral Equation

Subblocks t x s of M with rank k approximations are represented
by M|ixs = A- BT with #t x k-matrix A and #s X k-matrix B.

Kriemann, »Parallel H-Arithmetic«

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank

structure of subblocks of M.
Example: Helmholtz Integral Equation

Subblocks t x s of M with rank k approximations are represented
by M|ixs = A- BT with #t x k-matrix A and #s X k-matrix B.

Kriemann, »Parallel H-Arithmetic«

Hierarchical Matrices

In hierarchical matrices (H-matrices) the indexset I of a given
dense matrix M7*! is reordered to expose the (numerical) low-rank
structure of subblocks of M.

Subblocks t x s of M with rank k approximations are represented
by M|xs = A- BT, with #t x k-matrix A and #s x k-matrix B.

Parallel H-Arithmetic«

Hierarchical Matrices

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical
partitioning for I x I.

Only blocks of the partition are represented in
the H-matrix, either as a dense matrix, a
low-rank matrix or a block matrix (with further

Hierarchical Matrices

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical
partitioning for I x I.

Only blocks of the partition are represented in
the H-matrix, either as a dense matrix, a
low-rank matrix or a block matrix (with further

subblocks). @
H-Arithmetic

Complete matrix arithmetic is possible, e.g., addition, multiplication,
inversion, LU factorization (recursive, block-wise operations)

‘H-arithmetic is approximative. Low-rank subblocks are truncated to
rank k (precision €) after each (sub-) operation.

‘H-arithmetic has O (nlog® n) complexity.

No pivoting possible due to fixed block structure.

Hierarchical Matrices

Structure depends on Geometry

21

R
==
N
N
N
HH

S
AR
K

RN

SESSSSN
5
SRS
RSN
LN

N

<

KRR
SRR
RRRRRRRY

AYAVAY,
IAﬁ"
Prod o

AAVAYa v AVAY o)
VYV, AVAVAV oAy
OOV
e

~

SSREREH

S

Kriemann, »Parallel H-A

Hierarchical Matrices

Structure depends on Geometry

B

e
A

o
S ELITIN

2 N
RRRRIRRIIIN

S ATATATAT TS

SRR

RN

SRR

X
N

R

Hierarchical Matrices

Structure depends on Geometry

R

NANW
ELONAANA
NN K W

Hierarchical Matrices

Structure depends on Geometry/Problem

- A b
% &
* o
i
. = 3 5 A AR
‘it ;EE Y] s
el i Mg o
;) T =
] 2
| 1
. & v
i7 it H»iﬁ:i
i !
. " il 22 eee e
| i 70 e
i e W TR T

Implementation

Implementation

All H-matrix algorithms are implemented in the library HLIBpro.

HLIBpro

e HLIBpro implements an extensive set of H-matrix algorithms,
® was developed using C++ since the beginning,

® various parallel APIs used in the past (Pthreads, MPI,
OpenMP).

On multi-/many-core CPUs Threading Building Blocks (TBB) is
used for parallelisation.

TBB

® open source software library for C++
® implements various forms of loop-parallelisation
® is based on tasks and exposes this for task based computations,

® permits seemless integration with C++11 via lambda functions.

Implementation

OpenMP?
® Tasks not available in OpenMP 2.5 when task based
‘H-arithmetic was developed,
¢ not all C++ compilers fully support(-ed?) OpenMP,

® Tasks and task dependencies are fixed at compile time at
source code level (TBB: at runtime).

Implementation

OpenMP?
® Tasks not available in OpenMP 2.5 when task based
‘H-arithmetic was developed,
¢ not all C++ compilers fully support(-ed?) OpenMP,

® Tasks and task dependencies are fixed at compile time at
source code level (TBB: at runtime).

Problems

® Known deadlock issue in TBB with recursive parallelisation and
mutices in inner loop

task APPLY UPDATE(U, M)
lock mutex(M);
spawn sub task applying U to M;
unlock mutex(M);

Implementation
OpenCL/CUDA?

® H-matrix algorithms work on an extremely heterogenous data

® up to several million sub blocks
® block sizes from 10..109,
e different rank per block

® low-rank truncation involves QR (O (n)), SVD (O (k)), gemm
(O (n)) up to several thousand times per block,

e for batch operations: need to fix rank/block sizes, loose
memory eff. /accuracy,

® can efficiently be used for evaluation of quadrature rules during
construction.

Implementation

H-Matrix Construction

Algorithm
All subblocks can be built independently.

procedure BUILD(% X s)
if ¢ X s is leaf then
build dense/low-rank block
else
parallel for all sub blocks ¢’ x s’ do
build(t' x s);

Implementation

H-Matrix Construction

Algorithm
All subblocks can be built independently.

mat_build (Block x b) {
parallel_for(blocked_range2d(@, nbrows, @, nbcols),
[...] (const blocked_range2d & r) {
for (auto i = r.rows().begin(); i != r.rows().end(); ++i)
for (auto j = r.cols().begin(); j != r.cols().end(); ++j)
mat_build(b->son(i, j)); }); 3}

Scheduling by TBB respects CPU core locality.

Implementation

H-Matrix Construction

Algorithm
All subblocks can be built independently.

mat_build (Block * b) {
parallel_for(blocked_range2d(@, nbrows, @, nbcols),
[...] (const blocked_range2d & r) {
for (auto i = r.rows().begin(); i != r.rows().end(); ++i)
for (auto j = r.cols().begin(); j !'= r.cols().end(); ++j)
mat_build(b->son(i, 7)); }); I}

Scheduling by TBB respects CPU core locality.

Numerical Results (Sequential)

n t —t_ Mem Mem

nlogn nlogn

in sec in MB

10,720 46.4 3.24 186 1.30
42,860 207.8 3.15 904 1.37
171,520 8726 2.93 4,290 1.44
686,080 3689.4 2.77 19,810 1.49 (E7-8857)

Implementation

H-Matrix Construction

Algorithm
All subblocks can be built independently.

mat_build (Block x b) {
parallel_for(blocked_range2d(@, nbrows, @, nbcols),
[...] (const blocked_range2d & r) {
for (auto i = r.rows().begin(); i != r.rows().end(); ++i)
for (auto j = r.cols().begin(); j != r.cols().end(); ++j)
mat_build(b->son(i, j)); }); 3}

Scheduling by TBB respects CPU core locality.

Numerical Results (Parallel)

Cores Time Speedup

E7-8857 12 69.4s 10.23
48 18.0s 39.36

KNL 7210 64 24.0s 87.89

Implementation

H-LU Factorization

The H-LU factorisation A = LU is defined by:

A= (Ao Aor) _ (Loo (U0 Un
A An Ly Lu Un)’
which leads to the following equations and recursive algorithm

_ procedure LU(A, L,U)

Aoo = LooUoo if A is block matrix then
A01 = L00U01 LU(Aoo, Loo, Uno);
SOLVELL(Ao1, Loo, Uo1);

Ao = L1oUgo SoLvEUR(Aio, L1o, Uoo);

Ay = A — LioUo MurTIPLy (1, Lo, Uot, A1);
LU(A11,L11,U11);

Ay = L11Un else L)

A=LU,

Implementation

H-LU Factorization

The H-LU factorisation A = LU is defined by:

A= (Ao Aor) _ (Loo (U0 Un
A An Ly Lu Un)’
which leads to the following equations and recursive algorithm

_ procedure LU(A, L,U)
Aoo = LooUoo if A is block matrix then
A01 = L00U01 LU(Aoo, Loo, Uno);
SOLVELL(Ao1, Loo, Uo1);

AlO - LlOUOO SOLVEUR(Alo,Lm, Uoo);
Ay = Ay — L1oUpt MurtipLy(—1, Lo, Uo1, A11);
LU(A11,L11,U171);
All — LllUll i (11 11 11)
A =LU;

Recursive algorithm is not optimal for parallelisation.

ation

H-LU Factorization
Parallel #-LU

Tasks for sub-operations together with dependencies between them
are defined, yielding a DAG:

Dependencies:

procedure LU(Al¢xt, Llext, Ultxt)
if A is block matrix then
for i€ {0,1} do
task(LU(A|ti><ti)), = level(ti);
for s € T¢(I),s >; t; do
if A|sx¢, is not blocked then

task(SOLVEUR(Alsxt;, Llsxt;» Ule; xt;)i :H

if Al¢;xs is not blocked then
task(SOLVELL(Al¢; xs, Llt; xt;, Ultixs));

for s,r € TZ(I),S,T‘ >rt; do

if L|rxt;, Ut;xs or Alrxs is not blocked then
task(MULTIPLY(—1, Lyrxt; , Ut; xs, Alrxs)); I
else |
task(A := LU);

Implementation

H-LU Factorization
Parallel #-LU

Tasks for sub-operations together with dependencies between them
are defined, yielding a DAG:

class LU : public tbb::task { Dependencies:
task * execute () {
factorize(A);
for (auto M : matrices_right_of(A))
if (solve_task(M)->dec_ref_count() == 0)
spawn(solve_task(M));

¥ Ba

class SolvelL : public tbb::task {

task x execute () {
solve(L, X);
for (auto M : matrices_below(X))
if (update_task(M)->dec_ref_count() == 0) [

spawn(update_task(M)); \
T ¥s N

H-LU Factorization

Numerical Results (Sequential)

Implementation

n t nlotg?’n Mem n'\{loeénn

in sec in MB
2,680 5.9 1.49 30 0.98
10,720 48.4 1.88 182 1.27
42,880 266.9 1.71 887 1.34
171,520 1636.2 1.81 4,220 1.41
686,080 8835.4 1.77 20,010 1.50

(E7-8857)

H-LU Factorization

Numerical Results (Sequential)

Implementation

n t n loth n Mem nh{l(fgznn
in sec in MB
2,680 5.9 1.49 30 0.98
10,720 48.4 1.88 182 1.27
42,830 266.9 1.71 887 1.34
171,520 1636.2 181 4220 141
686,080 8835.4 1.77 20,010 1.50
(E7-8857)
Numerical Results (Parallel)
Parallel

#Cores Time Speedup

E7-8857 12 132.6s 10.89

48 38.8s 37.24

KNL 7210 64 144.2s 59.60

And Beyond: Distributed Memory

And Beyond: Distributed Memory

Simple Arithmetic

Algorithms with (mostly) independent
operations are implemented using MPI
(construction, MVM, addition).

Problem: load balancing. Cost per block is only
roughly known (depends on rank).

Kriemann, »Parallel H-Arithmetic«

And Beyond: Distributed Memory

Simple Arithmetic

Algorithms with (mostly) independent
operations are implemented using MPI
(construction, MVM, addition).

Problem: load balancing. Cost per block is only
roughly known (depends on rank).

H-LU factorization

Communication pattern similar to dense LU.

However, subblocks are used on different levels
of the hierarchy.

Wanted: bring task approach to distributed
memory with efficient task scheduling (handling
communication).

And Beyond: Distributed Memory
Handling of Large Blocks

For large low-rank blocks M|;xs = A - BT min{#t, #s} > Niarge
Niarge > 1/p need further parallelization of A and B.

procedure TRUNCATE(A, B)
[Qa, Ra] = qr(A);
(@B, Rp] = qr(B);
[U,S,V] = svd(RaR%);]
k' := new_rank(S);
A= (QaUS)1:K,2); i
B :=(QpV)(1:K,:);

And Beyond: Distributed Memory
Handling of Large Blocks

For large low-rank blocks M|;xs = A - BT min{#t, #s} > njarge
Niarge > 1/p need further parallelization of A and B.

procedure TRUNCATE(A, B)
[Qa, Ra] = qr(A);
(@B, Rp] = qr(B);
[U,S,V] = svd(RaR%);
k' := new_rank(S);
A= (QaUS)1:K,2);
B :=(QpV)(1:K,:);

And Beyond: Distributed Memory
Handling of Large Blocks

For large low-rank blocks M|;xs = A - BT min{#t, #s} > njarge
Niarge > 1/p need further parallelization of A and B.

procedure TRUNCATE(A, B)
[Qa, Ra] = qr(A);
(@B, RB] = qr(B);
[U,S,V] = svd(RaR%);
k' := new_rank(S);

= (QaUS)(1:K,2);

= (QpV)(L: K,2);

Introduces additional synchronization (e.g., during QR).

