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Combustion Application



Combustion Application

Challenges in Downsizing and Boosting Engines

Modern engines operate at higher load and elevated pressure for higher efficiency,
better fuel economy and lower emissions.

https://youtu.be/qMZ7dFZvhhl
pressure).

This also leads to higher knock propensity, and even super-knock (extremely high
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Combustion Application

Development of detonation waves

Autoignition kernels
Complex interplay between auto-ignition & N ».
fronts and acoustic pressure resonance. # > )
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Detonation fronts
Isocontours of temperature and pressure at the onset of
detonation.

For the 2-D case, the full dataset has a size of ~100TB with 10 millions of grid
points'.

Need for compression!

'"™MB. Luong, S. Desai, F.E. Herndndez Pérez, R. Sankaran, B. Johansson, H.G. Im, A statistical analysis of
developing knock intensity in a mixture with temperature inhomogeneities, Proc. Combust. Inst. 37 (2020).
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Combustion Application

Lossy compression possible as computation permits reduced accuracy (e < 107%).

Compression candidates

ZFP’ S72
® block-wise orthogonal transforms (blocks of ® curve fitting algorithm
size 47) + good compression rate for general data
+ very fast

- limited compression rate

TTHRESH? MGARD?
® Tucker decomposition (HOSVD) plus ® multi-grid technique plus lossless
bit-plane truncation compression
- very slow due to global HOSVD - not parallel on shared memory machines

‘\ indstrom, P: “Fixed-rate compressed floating-point arrays”. If rans. on Vis. and Comp. Graphics 20(12), 2674-2683 (2014)

“Fast Error-Bounded Lossy HPC Data Compression with SZ" In: 2016 IEEE IPDPS. pp. 730-739 (2016)

“Di, S., Cappello, |
poll, R, etal.: “TTHRESH: Tensor Compression for Multidimensional Visual Data". IEEE Trans. on Vis. and Comp. Graphics 26(9),

ter-f

’\\\M ey, B., etal.: "Multilevel techniques for compression and reduction of scientific data — the univariate case”. CompVis.Sci. 19, 65-76 (2018)
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Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that



HLRcompress

Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that

Singular Value Decomposition Computes best approximation,

Runtime complexity: O (n3).

function SVD(in: D, g, out: U, V)
[Us, Ss, V] :=svd( D );

rank(Ss, €);

Us(:,1: k) - Ss(1: k,1:k);

Vs(:, 1:k);

k:
U:
V.



Low-Rank Approximation

HLRcompress

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with

k <« n such that

Rank Revealing QR

Based on reordering the remaining columns
during QR.

Rank and error control by R(i : k, i : k).
Runtime complexity: O (n3).

function RRQR(in: D, g, out: U, V)
[0, R, P] = arp(D);
for i=1,..., n do

S(i) = ||R(i:n,i: n)HF;



HLRcompress

Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that

Approximate column basis and convert ma-
trix into new basis.

No guaranteed error control.

Runtime complexity: O (k : n2).

function CoLumnBasis(in: D, €, out: Q)
Randomized SVD 0 := 0; Up := U7 np :=4;
fori=1,..., n/np do
T; :== randnorm(n, np);
0, :=ar((/— QO"D - T);
Q= (I—00"0Q;
= ,QJ;
if [|[D—QQ"D| <e-||D| then

reak;



HLRcompress

Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that

Approximate column basis and convert ma-
trix into new basis.

No guaranteed error control.

Runtime complexity: O (k : n2).

Randomized SVD
function RanDSVD(in: D, g, out: U, V)
B := ColumnBasis (D, €);
[0, R] := ar(D" - B);
[Us Ss, Vs] == svd(R);
rank(Ss, €);
V(i 1:k)S(1: k,1:k);

Kk :
U:=B-
V=DM B Us(:1:k);



HLRcompress

Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that

Successively selects pairs of rows/columns
for rank-1 updates. ACA may fail.

Runtime complexity: O (k% - n).

function ACA(in: D, g, out: U, V)

=1

fori=1,... do
u; = column(D, ¢;) — U - V(¢;,:);
ri i=maxidx(w;); u; := uifui(ry);

vii=row(D, ) — V- U(r,:);

U:=[U, ul; V=1V, vl

if [luvi|l, < e||U°VH||, then
reak;

Ci+1 = maxidx(v;);

Cross Approximation



HLRcompress

Low-Rank Approximation

Given D € €©"*" and a user-defined € > 0 one looks for U, V & €"*k with
k < n such that

Singular Value Decomposition
Rank Revealing QR

Randomized SVD

Cross Approximation

All algorithms also usable for recompression of low-rank matrices in O (k2 : n).



HLRcompress

Global vs. Local Approximation

Normally, D is not globally low-rank approximable, i.e. k = n.
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HLRcompress

Global vs. Local Approximation

Normally, D is not globally low-rank approximable, i.e. k = n.
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But D is locally low-rank approximable!




HLRcompress

Global vs. Local Approximation

Normally, D is not globally low-rank approximable, i.e. k = n.
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But D is locally low-rank approximable!

Problem: identify local, low-rank approximable blocks in D.




HLRcompress

Initial Partitioning

Let D = (dij)?j-_:lo, di; € C be N = n? datapoints with i,j € [ :=={0,--- ,n — 1}
at positions (i - h,j-h), h > 0. The (index) set / x [ can recursively be split until
blocks (7, 0) C I x [ with min(#7, #0) > Nyile, Ntile > 0, are constructed:
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HLRcompress

Initial Partitioning

Let D = (dl-j)?j_:lo, dij € € be N = n? datapoints with i, j € [:={0,--- ,n — 1}
at positions (i - h,j-h), h > 0. The (index) set / x [ can recursively be split until
blocks (7, 0) C I x [ with min(#7, #0) > Nyile, Ntile > 0, are constructed:

Ntile

Ntile |L107

Such constructed blocks contain spatially neighboured datapoints.
The construction yields an hierarchical tree 7" with root (/,/) and non-leaf blocks
(t,0) € T with sub-nodes

(10, 00) (70, 01)
(t1.00) (71,01)



HLRcompress

Initial Partitioning

Let D = (du)u 1, dij € C be N = n? datapoints with i,j € [:={0, -~ ,n — 1}
at positions (i - h,j-h), h > 0. The (index) set | x | can recursively be spllt until
blocks (7, 0) C I x [ with min(#7, #0) > Nyile, Ntile > 0, are constructed:

/ Ngile

Ntile |L107

Such constructed blocks contain spatially neighboured datapoints.
The construction yields an hierarchical tree 7" with root (/,/) and non-leaf blocks
(t,0) € T with sub-nodes

(10, 00) (70, 01)
(t1.00) (71,01)

Remark

For non-tensor grids, construction can be easily performed by, e.g., kd-tree algorithm or
space filling curves.



HLRcompress

Approximation Phase

For each leaf (t,0) € T one computes a low-rank approximation UT,UV-L{_‘IU of the
corresponding data block Dy 4 := Dl with a block-local accuracy er,4.
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Approximation Phase

For each leaf (t,0) € T one computes a low-rank approximation Ur,o\/ﬁg of the
corresponding data block Dy 4 := Dl with a block-local accuracy er,4.

If the low-rank representation uses less memory (ks < ntile/2) it is kept.



HLRcompress

Approximation Phase

For each leaf (t,0) € T one computes a low-rank approximation UT,UV-L{_,IU of the
corresponding data block Dy 4 := Dl with a block-local accuracy er,4.

If the low-rank representation uses less memory (ks < ntile/2) it is kept.

Remark

All approximations are independent and can be performed in parallel. Also, since by
construction the blocks are of similar size, batch functions may be used, e.g., on GPUS.



HLRcompress

Merging Phase

If for a non-leaf (7, 0) € T all sub-blocks are in low-rank format, the sub-blocks
may be merged and recompressed while maintaining the approximation error.

If the recompression results in less memory, the coarser low-rank block is kept.
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Merging Phase

If for a non-leaf (7, 0) € T all sub-blocks are in low-rank format, the sub-blocks
may be merged and recompressed while maintaining the approximation error.
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The procedure stops if no sub-block can be merged or if the root (/, /) is reached.



Mergi,ng Phase HLRcompress

If for a non-leaf (7, 0) € T all sub-blocks are in low-rank format, the sub-blocks
may be merged and recompressed while maintaining the approximation error.

If the recompression results in less memory, the coarser low-rank block is kept.

The procedure stops if no sub-block can be merged or if the root (/, /) is reached.

Remark

Each merge[recompression is again independent and can be performed in parallel.
However, due to different ranks in the blocks, batch mode may be challenging to efficiently
deploy on manycore architectures.



Bi,na rg COmpreSSlOn HLRcompress

After a block (7, o) can not be merged, it either holds dense data Dy 4 or the
low-rank factors Uz g, Vz,g.

Depending on the computation, these are stored in double or single precision.

The approximation error ¢ typically leaves room for further compression of the
binary representation.

For this, we employ ZFP in fixed accuracy mode to further compress Dy 4 or
Ur.g, Vi¢ while maintaining the approximation error.

Remark

We also tried SZ but the localized compression were less optimal.
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Numerical Results

Hardware
All benchmarks are performed on a two-socket 64-core AMD Epyc 7702.

GPU benchmarks on NVIDIA A700.

Software
SZ: v2.1, best compression mode, with OpenMP
7/FP: v0.5.5, fixed-accuracy mode, with OpenMP
MGARD: v1.0, using additional lossless compression (CPU_Lossless).

HLRcompress: nijle = 32, with Intel TBB

Remark
MGARD only usable with accuracy € > 1075.

Also: GCC v10 compiler and Intel MKL for BLAS/LAPACK (AVX2 code path).



Logari_thmi_c Ke rne[ Numerical Results
This example uses
Dij = log|xi — xj|2

with x; = (sin ih, cos ih), h = 27/n.

This data set is very smooth resulting in a long merge
phase of HLRcompress.

Block Structure




Numerical Results

Logarithmic Kernel

Compression Rate Runtime
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Logarithmic Kernel

Compression Rate

% of full storage
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Numerical Results

Logarithmic Kernel

Approximation Phase on GPUs

Using gesvdjBatched for initial approximation phase.

Not usable for merge phase.

T
—e— NVidia A100

—¥— 2x AMD Epyc 7702
—»— Merge on AMD Epyc/ /
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Numerical Results

Logarithmic Kernel

Parallel Scaling

T T T
= 2x AMD Epyc 7702 /
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D is defined by the solutions of

0%u )
W—Au=f in Qx 1[0, T],

u(x,t)=g on dQ2 x [0, T], and
u(x,0)=0 inQ,

with Q = [—m, 72, T > 0 and

| sin(8xt) for x = (=, x1), [x1] < 0.
1o otherwise

The data becomes more chaotic with time, degrading low-rank compression rate.

Also, spatial resolution has significant influence on low-rank approximation.

Ronald Kriemann, Hatem Ltaief Minh Bau Luong, Francisco E. Herndndez Pérez, Hong G. Im and David Keyes, »High-Performance Spatial Data Compression for Scientific Applications«
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u(x,t)=g on dQ2 x [0, T], and
u(x,0)=0 inQ,

with Q = [—m, 72, T > 0 and

| sin(8xt) for x = (=, x1), [x1] < 0.
1o otherwise

t=3

The data becomes more chaotic with time, degrading low-rank compression rate.

Also, spatial resolution has significant influence on low-rank approximation.
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D is defined by the solutions of

0%u )
W—Au=f in Qx 1[0, T],

u(x,t)=g on dQ2 x [0, T], and
u(x,0)=0 inQ,

with Q = [—m, 72, T > 0 and

| sin(8xt) for x = (=, x1), [x1] < 0.
1o otherwise

t=5

The data becomes more chaotic with time, degrading low-rank compression rate.

Also, spatial resolution has significant influence on low-rank approximation.

Ronald Kriemann, Hatem Ltaief Minh Bau Luong, Francisco E. Herndndez Pérez, Hong G. Im and David Keyes, »High-Performance Spatial Data Compression for Scientific Applications«



Numerical Results

Wave Equation

D is defined by the solutions of

0%u )
W—Au=f in Qx 1[0, T],

u(x,t)=g on dQ2 x [0, T], and
u(x,0)=0 in Q,

with Q = [—m, 72, T > 0 and

| sin(8xt) for x = (=, x1), [x1] < 0.
9= 0 otherwise

t=7

The data becomes more chaotic with time, degrading low-rank compression rate.

Also, spatial resolution has significant influence on low-rank approximation.
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Numerical Results

Wave Equation

D is defined by the solutions of

0%u )
W—Au=f in Qx 1[0, T],

u(x,t)=g on dQ2 x [0, T], and
u(x,0)=0 in Q,

with Q = [—m, 72, T > 0 and

| sin(8xt) for x = (=, x1), [x1] < 0.
9= 0 otherwise

t=10

The data becomes more chaotic with time, degrading low-rank compression rate.

Also, spatial resolution has significant influence on low-rank approximation.

Ronald Kriemann, Hatem Ltaief Minh Bau Luong, Francisco E. Herndndez Pérez, Hong G. Im and David Keyes, »High-Performance Spatial Data Compression for Scientific Applications«



Wave Equation

Numerical Results

Compression Rate Runtime
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Numerical Results

Wave Equation

Compression Rate Runtime
17.5 T T T
—— HLRcompress 7
% (VOO T PPN AUV SERSSOes PRSI S
1501 — — ZFP A R e s P
/ 1004+ ——
...... SZ /
12.5 £
g / T
&10.0 7 ] o~
o (2] |
Z ,/ -E 1014/
§7.5 / £ ./ /'//,,.//'./__-v\,_\
£ B /,/'
50 / o wf‘,'
/ . i
ya L7
S I B | 7
0.0 ///
100 200 300 400 500 600 100 200 300 400 500 600
timestep

timestep




Numerical Results

Wave Equation

Dependence on Spatial Resolution

without ZFP
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Numerical Results

Wave Equation

Dependence on Spatial Resolution

with ZFP
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Numerical Results

Wave Equation

Comparison of Low-Rank Approximation Algorithms

Global Error

error

—- ACA .
RandsVD TR
10710+ —— svD N
—— RRQR AN
I
1072 1074 10 10-8 1010

precision

"Massei, S. and Robol, L. and Kressner, D.: “Hierarchical adaptive low-rank format with applications to
discretized partial differential equations”. Num. Lin. Alg. with App. (2022)
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Numerical Results

Combustion Application

Separate compression of 44 primitive variables:

® temperature, pressure, velocity and

® chemical species.

Dataset size is 20k x 20k per variable.

co

I L L L L I 1 L 1
64.4 64.8 64 64.4 64.8 64 64.4 64.8 64 64.4 64.8

t(us) t(us) t(us) t(us)

Profile reproduction with & < 1073, using € = 10~* for compression.

HLRcompress: using RandSVD, nje = 256.



Numerical Results

Combustion Application

Compression Rate
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Numerical Results

Combustion Application

Compression Rate
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Numerical Results

Combustion Application

Runtime
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Numerical Results

Combustion Application

Runtime
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Conclusion & Outlook

HLRcompress proved to be

e very efficient for 2D simulation data sets,
e fast and highly parallel,
e efficiently ported to GPUs.

Source code available via

https://gitlab.mis.mpg.de/rok/HLRcompress

"Ehrlacher, V, Grigori, L., Lombardi, D, Som] H.: “Adaptive Hierarchical Subtensor Partitioning for Tensor
Compression”, SIAM J. on Sci.Comp. 43, 139-1 (Z 1)
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Conclusion & Outlook

HLRcompress proved to be

e very efficient for 2D simulation data sets,
e fast and highly parallel,
e efficiently ported to GPUs.

Source code available via
https://gitlab.mis.mpg.de/rok/HLRcompress

What's next?

e tensor compression for higher dimensional data',

® integration of arithmetic.

"Ehrlacher, V, Grigori, L., Lombardi, D, Som] H.: \duptl\( Hierarchical Subtensor Partitioning for Tensor
Compression”, SIAM J. on Sci.Comp. 43, ’() (Z


https://gitlab.mis.mpg.de/rok/HLRcompress
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