Accumulator based Task-parallel \mathcal{H}-Factorization

Steffen Börm
University of Kiel

Ronald Kriemann
Max Planck Inst. for Math. i.t.S.

SIAM PP18

\mathcal{H}-Arithmetic with Accumulators

Motivating Example

Let A, B and C be \mathcal{H}-matrices with the shown structure.

For the multiplication $C:=A \cdot B$ several updates from different levels of the \mathcal{H}-hierarchy are applied to a single block.

As an example, the updates for $C_{t^{\prime}, s^{\prime}}$ are:

Similar updates are computed for all other sub blocks of the parent block $C_{t, s}$.

Motivating Example

Let A, B and C be \mathcal{H}-matrices with the shown structure.

For the multiplication $C:=A \cdot B$ several updates from different levels of the \mathcal{H}-hierarchy are applied to a single block.

As an example, the updates for $C_{t^{\prime}, s^{\prime}}$ are:

\square

Similar updates are computed for all other sub blocks of the parent block $C_{t, s}$.
In a classical implementation, all sub multiplications sum up to 24 truncations for the 3 low-rank blocks in $C_{t, s}$.

Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^0]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^1]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^2]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^3]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^4]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

[^5]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per subblock on level 4 , summing up to 15 truncations for all low-rank blocks in $C_{t, s}$.

[^6]
Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per subblock on level 4 , summing up to 15 truncations for all low-rank blocks in $C_{t, s}$.

Performing this for the full \mathcal{H}-multiplication $C:=C+A \cdot B$ the number of truncations is reduced from 646 to 500.

[^7]Let I be an index set, $T(I)$ a cluster tree over I and $T=T(I \times I)$ a block cluster tree over $T(I)$. For $t \in T(I)$ let \mathcal{S}_{t} denote the set of sons of t. Furthermore, let A, B, C be \mathcal{H}-matrices over T.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any \mathcal{H}-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.

Arithmetic

Let I be an index set, $T(I)$ a cluster tree over I and $T=T(I \times I)$ a block cluster tree over $T(I)$. For $t \in T(I)$ let \mathcal{S}_{t} denote the set of sons of t. Furthermore, let A, B, C be \mathcal{H}-matrices over T.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any \mathcal{H}-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.
\mathcal{H}-multiplication is split into two functions, which collect the updates and shift them down to sub blocks:

```
procedure \(\operatorname{AddProduct}\left(A_{t, r}, B_{r, s}, C_{t, s}\right)\)
    if \(A_{t, r}, B_{r, s}, C_{t, s}\) are block matrices then
        \(\mathcal{P}_{t, s}:=\mathcal{P}_{t, s} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;\)
    else
        \(U_{t, s}:=U_{t, s}+A_{t, r} \cdot B_{r, s} ;\)
```

```
procedure ApplyUpdates( ( }\mp@subsup{C}{t,s}{}
    if }\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
        for t'}\mp@subsup{t}{}{\prime}\in\mp@subsup{\mathcal{S}}{t}{},\mp@subsup{s}{}{\prime}\in\mp@subsup{\mathcal{S}}{\textrm{s}}{}\mathrm{ do
            U Ut,s
            for (At,r, 的,s})\in\mp@subsup{\mathcal{P}}{t,s}{},\mp@subsup{r}{}{\prime}\in\mp@subsup{\mathcal{S}}{r}{}\mathrm{ do
            AddProduct( ( At,r,r',
            ApplyUpdates( ( }\mp@subsup{t}{\mp@subsup{t}{}{\prime}}{\prime\prime}\mp@subsup{s}{}{\prime}\mathrm{ );
    else
        Ct,s}:=\mp@subsup{C}{t,s}{}+\mp@subsup{U}{t,si}{
```


Arithmetic

Let I be an index set, $T(I)$ a cluster tree over I and $T=T(I \times I)$ a block cluster tree over $T(/)$. For $t \in T(I)$ let \mathcal{S}_{t} denote the set of sons of t. Furthermore, let A, B, C be \mathcal{H}-matrices over T.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any \mathcal{H}-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.
\mathcal{H}-multiplication is split into two functions, which collect the updates and shift them down to sub blocks:

```
procedure \(\operatorname{AddProduct}\left(A_{t, r}, B_{r, s}, C_{t, s}\right)\)
    if \(A_{t, r}, B_{r, s}, C_{t, s}\) are block matrices then
        \(\mathcal{P}_{t, s}:=\mathcal{P}_{t, s} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;\)
    else
        \(U_{t, s}:=U_{t, s}+A_{t, r} \cdot B_{r, s} ;\)
```

```
procedure ApplyUpdates( ( }\mp@subsup{C}{t,S}{},\mathrm{ , type)
    if C}\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
        for t'}\mp@subsup{t}{}{\prime}\in\mp@subsup{\mathcal{S}}{t}{},\mp@subsup{s}{}{\prime}\in\mp@subsup{\mathcal{S}}{\textrm{s}}{}\mathrm{ do
            U \mp@subsup{t}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}}:=\mp@subsup{U}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}+\mp@subsup{U}{t,s,s}{\prime}\mp@subsup{|}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}
```



```
                AddProduct( ( Att,r',
            if type = recursive then
            ApplyUpdates( }\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}\mathrm{ );
    else
        Ct,s}:=\mp@subsup{C}{t,s}{}+\mp@subsup{U}{t,si}{
```

\mathcal{H}-matrix multiplication experiments are computed with \mathcal{H}-matrix based on Helmholtz SLP operator, $k=2$ on a unit sphere with block-wise accuracy of 10^{-4}.

Xeon E7-8857 (lvybridge)				
n	$t_{\text {std }}$	$t_{\text {accu }}$	Speedup	\#Trunc.
2.048	7.6	3.4	$2.23 x$	39%
8.192	55.7	35.9	$1.55 x$	52%
32.786	311.6	199.1	$1.56 x$	46%
131.072	1801.9	1024.4	$1.76 x$	37%
524.288	9836.4	5322.0	$1.85 x$	30%

Xeon Platinum 8176 (Skylake)

n	$t_{\text {std }}$	$t_{\text {accu }}$	Speedup
2.048	5.1	2.1	$2.46 x$
8.192	38.5	23.6	$1.63 x$
32.786	222.6	136.8	$1.63 x$
131.072	1274.8	713.9	$1.79 x$

\mathcal{H}-LU factorization

The classical, recursive formulation of \mathcal{H}-LU factorization consists almost entirely off \mathcal{H}-matrix multiplications:

```
procedure LU(A (A,t, , Lt,t,},\mp@subsup{U}{t,t}{}
    if A}\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        for 0\leqi<#S S do
```



```
        for i+1\leqj<#\mp@subsup{S}{t}{}}\mathrm{ do
            SolvELL( }\mp@subsup{A}{\mp@subsup{t}{i}{},\mp@subsup{t}{j}{\prime}}{},\mp@subsup{L}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{},}{,},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{j}{\prime}}{})
            SolvEUR( }\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,j,ti, }{\prime},\mp@subsup{U}{\mp@subsup{t}{i,ti}{*}}{})
        for }i+1\leqj,\ell<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
```



```
    else
    At,t}=\mp@subsup{L}{t,t}{}\mp@subsup{U}{t,t;}{
```

procedure $\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)$
if $A_{t, s,}, L_{t, t}, B_{t, s}$ are block matrices then

```
for 0\leqi<#S St do
        for 0\leqj<#S S
            SolveLL( }\mp@subsup{A}{t,,\mp@subsup{s}{j}{}}{},\mp@subsup{L}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{},\mp@subsup{B}{t,s,sj}{})
        for i+1\leq\ell<#\mp@subsup{S}{t}{}}\mathrm{ do
            for 0\leqj<#S do
```


else

$$
L_{t, t} B_{t, s}=A_{t, s}
$$

\mathcal{H}-LU factorization

The classical, recursive formulation of $\mathcal{H}-\mathrm{LU}$ factorization consists almost entirely off \mathcal{H}-matrix multiplications:

```
procedure LU(A (A,t,},\mp@subsup{L}{t,t}{},\mp@subsup{U}{t,t}{}
    if At,t is a block matrix then
        for 0 \leqi<#S S do
        LU( A}\mp@subsup{A}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,t,i,i}{},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{})
        for i+1\leqj<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do}
            SolveLL( }\mp@subsup{A}{\mp@subsup{t}{i}{},\mp@subsup{t}{j}{}}{},\mp@subsup{L}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{j}{}}{})
            SolveUR( }\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{},}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{})
        for }i+1\leqj,\ell<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
            AddProduct(-1, L Lt, ,t,},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{e}{}}{},\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{e}{}}{})
            APplyUpdates( }\mp@subsup{A}{t,t,te}{e})
    else
    At,t}=\mp@subsup{L}{t,t}{}\mp@subsup{U}{t,ti}{
```

```
procedure \(\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)\)
```

procedure $\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)$
if $A_{t, s,}, L_{t, t}, B_{t, s}$ are block matrices then

```
    if \(A_{t, s,}, L_{t, t}, B_{t, s}\) are block matrices then
```



```
    else
```

 else
 \(L_{t, t} B_{t, s}=A_{t, s i}\)
    ```
    \(L_{t, t} B_{t, s}=A_{t, s i}\)
```

A direct replacement of the \mathcal{H}-multiplication is not optimal, since it does not handle multiple updates during \mathcal{H}-LU.

\mathcal{H}-LU factorization

The classical, recursive formulation of \mathcal{H}-LU factorization consists almost entirely off \mathcal{H}-matrix multiplications:

```
procedure LU(A (A,t, , Lt,t,},\mp@subsup{U}{t,t}{}
    if A}\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        ApplyUpdates( ( }\mp@subsup{t}{t,t}{}\mathrm{ , nonrecursive );
        for 0}\leqi<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
            LU( A A 
        for i+1\leqj<#\mp@subsup{S}{t}{}}\mathrm{ do
```



```
            SolveUR( A At,\mp@subsup{t}{i}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{});
            for i+1\leqj,\ell<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do}
            AddProduct(-1, L Lt, ,tiv},\mp@subsup{U}{\mp@subsup{t}{i}{},\mp@subsup{t}{e}{}}{},\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{e}{}}{})
    else
        ApplyUpdates( }\mp@subsup{A}{t,t}{}\mathrm{ ,recursive );
        At,t}=\mp@subsup{L}{t,t}{}\mp@subsup{U}{t,t}{
```

```
procedure \(\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)\)
    if \(A_{t, s}, L_{t, t}, B_{t, s}\) are block matrices then
        ApplyUpdates( \(A_{t, s}\), nonrecursive );
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
            for \(0 \leq j<\# \mathcal{S}_{s}\) do
            SolveLL( \(\left.A_{t_{i}, s_{j}}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)\);
        for \(i+1 \leq \ell<\# \mathcal{S}_{t}\) do
            for \(0 \leq j<\# \mathcal{S}_{s}\) do
                    \(\operatorname{AddProduct}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{e}, s_{j}}\right) ;\)
    else
    ApplyUpdates( \(A_{t, s}\), recursive );
    \(L_{t, t} B_{t, s}=A_{t, s} ;\)
```

A direct replacement of the \mathcal{H}-multiplication is not optimal, since it does not handle multiple updates during \mathcal{H}-LU.

Instead, collecting and applying updates is separated and accumulators are shifted down level by level in the hierarchy.

\mathcal{H}-LU factorization

| Xeon E7-8857 (lvybridge) | | | | |
| ---: | ---: | ---: | ---: | ---: |
| n | $t_{\text {std }}$ | $t_{\text {accu }}$ | Speedup | \#Trunc. |
| 2.048 | 1.9 | 1.3 | $1.50 x$ | 54% |
| 8.192 | 14.5 | 10.6 | $1.37 x$ | 53% |
| 32.786 | 86.1 | 52.8 | $1.63 x$ | 38% |
| 131.072 | 537.5 | 284.5 | $1.89 x$ | 27% |
| 524.288 | 3101.2 | 1548.0 | $2.00 x$ | 21% |

Xeon Platinum 8176 (Skylake)

| n | $t_{\text {std }}$ | $t_{\text {accu }}$ | Speedup |
| ---: | ---: | ---: | ---: |
| 2.048 | 1.4 | 0.8 | $1.64 x$ |
| 8.192 | 10.0 | 7.1 | $1.41 x$ |
| 32.786 | 62.2 | 38.6 | $1.61 x$ |
| 131.072 | 387.1 | 205.0 | $1.89 x$ |

(time in seconds)

Rank Growth and Accuracy

Due to the different summation order of low-rank blocks, accumulator based \mathcal{H}-arithmetic shows higher ranks compared to standard \mathcal{H}-arithmetic.

Also the accuracy is slightly worse compared to standard \mathcal{H}-arithmetic.

| n | Mem ${ }_{\text {std }}$ | Memaccu | Increase |
| :---: | :---: | :---: | :---: |
| 8.192 | 175 | 185 | 5.7 \% |
| 32.786 | 837 | 907 | 8.3 \% |
| 131.072 | 3820 | 4210 | 10.2 \% |
| 524.288 | 17580 | 19590 | 11.4% |
| $\varepsilon=10^{-4}$ | Error $_{\text {std }}$ | Erroraccu | |
| 8.192 | 1.3_{10-3} | $2.7{ }_{10}{ }^{-3}$ | |
| 32.786 | $1.710-3$ | 4.1_{10-3} | |
| 131.072 | $2.410-3$ | 6.0_{10-3} | |
| 524.288 | $3.610-3$ | 8.810^{-3} | |

Rank difference between standard and accumulator \mathcal{H}-LU.

Rank Growth and Accuracy

Due to the different summation order of low-rank blocks, accumulator based \mathcal{H}-arithmetic shows higher ranks compared to standard \mathcal{H}-arithmetic.

Also the accuracy is slightly worse compared to standard \mathcal{H}-arithmetic.

| n | Memstd | Memaccu | Increase |
| :---: | :---: | :---: | :---: |
| 8.192 | 249 | 253 | 1.6 \% |
| 32.786 | 1280 | 1310 | 2.3 \% |
| 131.072 | 6420 | 6560 | 2.2 \% |
| 524.288 | 30840 | 31510 | $\begin{gathered} 2.2 \% \\ \text { (menory in MB) } \end{gathered}$ |
| $\varepsilon=10^{-6}$ | Error $_{\text {std }}$ | Erroraca | |
| 8.192 | 4.410-5 | $3.510-5$ | |
| 32.786 | $6.510-5$ | $6.7{ }_{10}-5$ | |
| 131.072 | $9.8{ }_{10}-5$ | $1.0_{10}-4$ | |
| 524.288 | $1.4{ }_{10}-4$ | $1.5{ }_{10}-4$ | |

Rank difference between standard and accumulator \mathcal{H}-LU.

However, this effect is dependent on the predefined accuracy of the \mathcal{H}-arithmetic. The better the approximation, the less the difference.

Adding Tasks

$\mathcal{H}-L U$ with Tasks

The standard, task-based \mathcal{H}-LU factorisation defines individual tasks for block factorisation, solving and updates based on the recursive \mathcal{H}-LU algorithm modified to have global scope.

```
procedure DAGLU(A}\mp@subsup{A}{t,t}{},\mp@subsup{L}{t,t}{},\mp@subsup{U}{t,t}{}
    task(LU( A At,t},\mp@subsup{L}{t,t}{},\mp@subsup{U}{t,t}{}))
    for }s\in\mp@subsup{T}{}{\ell(t)},s>>1t\mathrm{ do
        task(SolveLL( }\mp@subsup{A}{t,s}{},\mp@subsup{L}{t,t,t}{},\mp@subsup{U}{t,s}{}))
        task(SolveUR( }\mp@subsup{A}{s,t}{},\mp@subsup{L}{s,t}{},\mp@subsup{U}{t,t}{}))
    for s,r\in T }\mp@subsup{}{}{(t)},s,r>>1t d
        task(Multiply( -1, Ls,t , U U,r,},\mp@subsup{A}{s,r}{}))
```


With the level set $T^{\ell(t)}:=\{s \in T: \operatorname{level}(s)=$ level $(t)\}$ and the index set relation $s>/ t: \Leftrightarrow \forall i \in s, j \in t: i>j$.

$\mathcal{H}-L U$ with Tasks

The standard, task-based \mathcal{H}-LU factorisation defines individual tasks for block factorisation, solving and updates based on the recursive \mathcal{H}-LU algorithm modified to have global scope.

```
procedure DAGLU(A (A,t, , Lt,t,},\mp@subsup{U}{t,t}{}
    task(LU( A At,t, Lt,t,
    if }\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        for 0}\leqi<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
            DAGLU( }\mp@subsup{A}{\mp@subsup{t}{i}{},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{*},}{})
    for }s\in\mp@subsup{T}{}{\ell(t)},s>>1t d
        task(SolveLL( ( At,s,
        task(SolveUR( }\mp@subsup{A}{s,t}{},\mp@subsup{L}{s,t}{},\mp@subsup{U}{t,t}{}))
    for s,r\in Telt),s,r>,t do
        task(Multiply( -1, L_s,t,
```


With the level set $T^{\ell(t)}:=\{s \in T$: level $(s)=$ level $(t)\}$ and the index set relation $s>_{I} t: \Leftrightarrow \forall i \in s, j \in t: i>j$.

\mathcal{H}-LU with Tasks

The standard, task-based \mathcal{H}-LU factorisation defines individual tasks for block factorisation, solving and updates based on the recursive \mathcal{H}-LU algorithm modified to have global scope.

With the level set $T^{\ell(t)}:=\{s \in T$: level $(s)=$ level $(t)\}$ and the index set relation $s>_{I} t: \Leftrightarrow \forall i \in s, j \in t: i>j$.

Dependencies exist between factorisation and solve tasks on the same level or due to updates tasks on different levels.

Accumulator \mathcal{H}-LU with Tasks

The accumulator based \mathcal{H}-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.


```
    task(LU( A At,t, Lt,t,},\mp@subsup{U}{t,t}{}))
    if }\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        for 0\leqi<#S St do
            DAGLU( }\mp@subsup{A}{t,t,t}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{})
    for }s\in\mp@subsup{T}{}{\ell(t)},s>>,t\mathrm{ do
        task(SolveLL( ( At,s,
        task(SolveUR( }\mp@subsup{A}{s,t}{},\mp@subsup{L}{s,t}{\prime},\mp@subsup{U}{t,t}{}))
    for s,r r T Tl(t),s,r>,t do
        task(AddProduct(-1, L Ls,ti,},\mp@subsup{U}{t,r,r}{},\mp@subsup{A}{s,r}{}))
```

Let $\mathcal{U}_{t, s}$ be the set of all AddProduct tasks for $A_{t, s}$.

Accumulator \mathcal{H}-LU with Tasks

The accumulator based \mathcal{H}-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.

```
procedure \(\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\)
    \(\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)\);
    if \(A_{t, t}\) is a block matrix then
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
            \(\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;\)
    for \(s \in T^{\ell(t)}, s>_{1} t\) do
        \(\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)\);
        \(\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)\);
    for \(s, r \in T^{\ell(t)}, s, r>\), \(t\) do
        \(\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;\)
```

Let $\mathcal{U}_{t, s}$ be the set of all AddProduct tasks for $A_{t, s}$.
procedure BuildApplyTasks $\left(A_{t, s}\right)$
if $\mathcal{U}_{t, s} \neq \emptyset$ then
$\operatorname{task}\left(\operatorname{Apply}\right.$ Ppdates $\left.^{\left(A_{t, s}\right)}\right)$;
for $U \in \mathcal{U}_{t, s}$ do
$U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right.$);

Dependency rules:
If updates exist, an ApplyUpdates task is required and depends on them.

Accumulator \mathcal{H}-LU with Tasks

The accumulator based \mathcal{H}-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.

```
procedure \(\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\)
    \(\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)\);
    if \(A_{t, t}\) is a block matrix then
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
            \(\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;\)
    for \(s \in T^{\ell(t)}, s>_{1} t\) do
        \(\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)\);
        \(\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)\);
    for \(s, r \in T^{\ell(t)}, s, r>\), \(t\) do
        \(\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;\)
```

Let $\mathcal{U}_{t, s}$ be the set of all AddProduct tasks for $A_{t, s}$.
procedure BuildApplyTASks $\left(A_{t, s}\right)$
if $\mathcal{U}_{t, s} \neq \emptyset$ or task(parent) exists then
$\operatorname{task}\left(\operatorname{Apply}\right.$ Ppdates $\left.^{\left(A_{t, s}\right)}\right)$;
for $U \in \mathcal{U}_{t, s}$ do
$U \rightarrow \operatorname{task}\left(\operatorname{Apply} U p d a t e s\left(A_{t, s}\right)\right) ;$

Dependency rules:
If a block has an ApplyUpdates task, so have all subblocks.

Accumulator \mathcal{H}-LU with Tasks

The accumulator based \mathcal{H}-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.

```
procedure \(\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\)
    \(\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)\);
    if \(A_{t, t}\) is a block matrix then
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
            \(\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;\)
    for \(s \in T^{\ell(t)}, s>_{1} t\) do
        \(\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)\);
        \(\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)\);
    for \(s, r \in T^{\ell(t)}, s, r>, t\) do
        \(\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;\)
```

Let $\mathcal{U}_{t, s}$ be the set of all AddProduct tasks for $A_{t, s}$.
procedure BuildApplyTasks $\left(A_{t, s}\right)$
if $\mathcal{U}_{t, s} \neq \emptyset$ or task(parent) exists then
task (ApplyUpdates $\left(A_{t, s}\right)$);
for $U \in \mathcal{U}_{t, s}$ do
$U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right) ;$
if task(parent) exists then
task(parent) $\rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right)$;

Dependency rules:
Parent tasks need to be executed before son tasks.

Accumulator \mathcal{H}-LU with Tasks

The accumulator based \mathcal{H}-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.

```
procedure \(\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\)
    \(\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)\);
    if \(A_{t, t}\) is a block matrix then
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
            \(\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;\)
    for \(s \in T^{\ell(t)}, s>_{1} t\) do
        \(\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)\);
        \(\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)\);
    for \(s, r \in T^{\ell(t)}, s, r>, t\) do
        \(\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;\)
```

Let $\mathcal{U}_{t, s}$ be the set of all AddProduct tasks for $A_{t, s}$.
procedure BuildApplyTasks $\left(A_{t, s}\right)$
if $\mathcal{U}_{t, s} \neq \emptyset$ or task(parent) exists then
task (ApplyUpdates $\left(A_{t, s}\right)$);
for $U \in \mathcal{U}_{t, s}$ do
$U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right.$);
if task(parent) exists then
task(parent) $\rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right)$;
if $\operatorname{task}\left(\operatorname{LU}\left(A_{t, s}\right)\right)$ or $\operatorname{task}\left(\operatorname{Solve}\left(A_{t, s}\right)\right)$ exists then
task(ApplyUpdates $\left.\left(A_{t, s}\right)\right) \rightarrow$
$\operatorname{task}\left(\operatorname{LU}\left(A_{t, s}\right)\right) / \operatorname{task}\left(\operatorname{Solve}\left(A_{t, s}, \cdot, \cdot\right)\right)$
else
for $\left(t^{\prime}, s^{\prime}\right) \in \mathcal{S}_{t, s}$ do
BuildApplyTasks $\left(A_{t^{\prime}, s^{\prime}}\right)$;

Dependency rules:
If $\mathrm{LU} /$ solve task exists, it depends on the ApplyUpdates task.

Numerical Experiments

Experiments are computed for the Helmholtz example with $n=524.288$ (lvybridge) and $n=131.072$ (Skylake).

Xeon E7-8857 (lvybridge)

| \# cores | $t_{\text {std }}$ | $t_{\text {accu }}$ | Speedup |
| ---: | ---: | ---: | ---: |
| 1 | 3101.2 | 1548.0 | $2.00 x$ |
| 12 | 285.3 | 157.3 | $1.81 x$ |
| 24 | 156.4 | 91.2 | $1.72 x$ |
| 48 | 99.1 | 66.9 | $1.48 x$ |

Xeon Platinum 8176 (Skylake), no HT

| \# cores | $t_{\text {std }}$ | $t_{\text {accu }}$ | Speedup |
| ---: | ---: | ---: | ---: |
| 1 | 387.1 | 205.0 | $1.89 x$ |
| 28 | 21.2 | 12.2 | $1.74 x$ |
| 56 | 14.3 | 9.9 | $1.44 x$ |

Further Modifications

Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the accumulator. Instead, this may be postponed until all updates are available and then applied together.

For this, an additional set $\mathcal{P}_{t, s}^{\text {direct }}$ of pending direct updates is introduced:
procedure $\operatorname{AddPRoductLazy}\left(A_{t, r}, B_{r, s}, C_{t, s}\right)$
if $A_{t, r}, B_{r, s}, C_{t, s}$ are block matrices then $\mathcal{P}_{t, s}:=\mathcal{P}_{t, s} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;$
else
$\mathcal{P}_{t, s}^{\text {direct }}:=\mathcal{P}_{t, s}^{\text {direct }} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;$
procedure $\operatorname{Apply} \cup p d a t e s L A Z Y\left(C_{t, s}\right)$
if $C_{t, s}$ is a block matrix then
for $(A, B) \in \mathcal{P}_{t, s}^{\text {direct }}$ do $U_{t, s}:=U_{t, s}+A \cdot B ;$
for $t^{\prime} \in \mathcal{S}_{t}, s^{\prime} \in \mathcal{S}_{s}$ do
$U_{t^{\prime}, s^{\prime}}:=U_{t^{\prime}, s^{\prime}}+\left.U_{t, s}\right|_{t^{\prime}, s^{\prime}} ;$ for $\left(A_{t, r}, B_{r, s}\right) \in \mathcal{P}_{t, s}, r^{\prime} \in \mathcal{S}_{r}$ do $\operatorname{AddProduct}\left(A_{t^{\prime}, r^{\prime}}, B_{r^{\prime}, s^{\prime}}, C_{t^{\prime}, s^{\prime}}\right)$; ApplyUpdates($C_{t^{\prime}, s^{\prime}}$);
else
$C_{t, s}:=C_{t, s}+U_{t, s} ;$

Lazy evaluation applies to the accumulators per level and not the destination block.

Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the accumulator. Instead, this may be postponed until all updates are available and then applied together.
For this, an additional set $\mathcal{P}_{t, s}^{\text {direct }}$ of pending direct updates is introduced:


```
    if }\mp@subsup{A}{t,r,}{},\mp@subsup{B}{r,s}{},\mp@subsup{C}{t,s}{}\mathrm{ are block matrices then
        \mathcal{P}
    else
        \mathcal{P}}\mp@subsup{\mathcal{t,s}}{\mathrm{ direct }}{\mathrm{ m}}=\mp@subsup{\mathcal{P}}{t,s}{\mathrm{ direct }}\cup{(\mp@subsup{A}{t,r}{},\mp@subsup{B}{r,s}{})}
```

```
procedure ApplyUpdatesLazy ( }\mp@subsup{C}{t,s}{}
    if C}\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
        for U Sort({A.B:(A,B)\in P}\mp@subsup{\mathcal{P}}{t,S}{\mathrm{ direct }}})\mathrm{ do
        Ut,s
        for t}\mp@subsup{t}{}{\prime}\in\mp@subsup{\mathcal{S}}{t}{},\mp@subsup{s}{}{\prime}\in\mp@subsup{\mathcal{S}}{s}{}\mathrm{ do
        U Ut,s,s
        for }(\mp@subsup{A}{t,r}{},\mp@subsup{B}{r,s}{})\in\mp@subsup{\mathcal{P}}{t,s}{},\mp@subsup{r}{}{\prime}\in\mp@subsup{\mathcal{S}}{r}{}\mathrm{ do
            AddProduct( ( }\mp@subsup{t}{\mp@subsup{t}{}{\prime},\mp@subsup{r}{}{\prime}}{\prime},\mp@subsup{B}{\mp@subsup{r}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime},\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime})
        ApplyUpdates( }\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime})
    else
    Ct,s}:=\mp@subsup{C}{t,s}{}+\mp@subsup{U}{t,s}{}
```

Lazy evaluation applies to the accumulators per level and not the destination block.
Since all updates are available, it also permits update sorting.

Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the accumulator. Instead, this may be postponed until all updates are available and then applied together.
For this, an additional set $\mathcal{P}_{t, s}^{\text {direct }}$ of pending direct updates is introduced:


```
    if }\mp@subsup{A}{t,r,}{},\mp@subsup{B}{r,s}{},\mp@subsup{C}{t,s}{}\mathrm{ are block matrices then
        \mathcal{P}
    else
        \mathcal{P}}\mp@subsup{\mathcal{t,S}}{\mathrm{ direct }}{}:=\mp@subsup{\mathcal{P}}{t,s}{\mathrm{ direct }}\cup{(\mp@subsup{A}{t,r,}{},\mp@subsup{B}{r,s}{})}
```

```
procedure ApplyUpdatesLazr ( }\mp@subsup{C}{t,S}{}
    if C}\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
```



```
        U U,s}:=\mp@subsup{U}{t,s}{}+\mathrm{ reduce(U);
        for t'\in\mathcal{S}
        U Ut,s
        for }(\mp@subsup{A}{t,r}{},\mp@subsup{B}{r,s}{})\in\mp@subsup{\mathcal{P}}{t,s}{},\mp@subsup{r}{}{\prime}\in\mp@subsup{\mathcal{S}}{r}{}\mathrm{ do
            AddProduct( ( }\mp@subsup{t}{\mp@subsup{t}{}{\prime},\mp@subsup{r}{}{\prime}}{\prime},\mp@subsup{B}{\mp@subsup{r}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime},\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime})
        ApplyUpdates( }\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}\mathrm{ );
    else
    Ct,s
```

Lazy evaluation applies to the accumulators per level and not the destination block.
Since all updates are available, it also permits update sorting or batch execution.

\mathcal{H}-matrix multiplication

| n | $t_{\text {eager }}$ | $t_{\text {lazy }}$ |
| ---: | ---: | ---: |
| 2.048 | 3.4 | 3.4 |
| 8.192 | 35.9 | 35.9 |
| 32.786 | 199.1 | 195.0 |
| 131.072 | 1024.4 | 1023.1 |

| \mathcal{H}-LU factorization | | | | |
| ---: | ---: | ---: | ---: | :---: |
| eager | lazy | | | |
| n | Time | Error | Time | Error |
| 2.048 | 1.3 | $1.0_{10-}-3$ | 1.4 | 1.2_{10-3} |
| 8.192 | 10.6 | 2.7_{10-3} | 10.8 | 2.3_{10-3} |
| 32.786 | 52.8 | 4.2_{10-3} | 54.2 | 3.6_{10-3} |
| 131.072 | 284.5 | 6.0_{10-3} | 291.8 | 5.4_{10-3} |

All computed without update sorting.

Conclusion

Accumulator based \mathcal{H}-arithmetic significantly reduces the number of truncations during \mathcal{H}-arithmetic with a possible reduction in complexity.

Modification of existing implementations is simple and straight forward.
Parallel speedup is slightly reduced compared to standard \mathcal{H}-arithmetic but still significant overall speedup.

Conclusion

Accumulator based \mathcal{H}-arithmetic significantly reduces the number of truncations during \mathcal{H}-arithmetic with a possible reduction in complexity.

Modification of existing implementations is simple and straight forward.
Parallel speedup is slightly reduced compared to standard \mathcal{H}-arithmetic but still significant overall speedup.

[^0]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^1]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^2]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^3]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^4]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^5]: ${ }^{1} \mathrm{~S}$. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^6]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^7]: ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

