Accumulator based Task-parallel
‘H-Factorization

Steffen Borm Ronald Kriemann
University of Kiel Max Planck Inst. for Math. i.t.S.

SIAM PP18




‘H-Arithmetic with Accumulators



‘H-Arithmetic with Accumulators

Motivating Example

S 4

Let A, B and C be H-matrices with the shown
structure.

For the multiplication C := A - B several updates tl
from different levels of the H-hierarchy are applied to
a single block.

As an example, the updates for Cy & are:

3-8

@ ~[-0

e

.
]
[

Similar updates are computed for all other sub blocks of the parent block Cis.



‘H-Arithmetic with Accumulators

Motivating Example

S 4

Let A, B and C be H-matrices with the shown
structure.

For the multiplication C := A - B several updates tl
from different levels of the H-hierarchy are applied to
a single block.

As an example, the updates for Cy & are:

3-0- 0

‘ —
+

e

Similar updates are computed for all other sub blocks of the parent block Cis.

In a classical implementation, all sub multiplications sum up to 24 truncations for
the 3 low-rank blocks in Gy .



Motivating Example

‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards

shifted down following the hierarchy.’

+

+

+

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and

Visualization in Science, 2017.




Motivating Example

‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards

shifted down following the hierarchy.’

+

+

+

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and

Visualization in Science, 2017.




‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

AL

{
E*TH-D + [

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017.



‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

AL

{
EE*=EH-D + [
s

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017.



‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . + ]

{
EE*=EH-D + [
o

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017.



‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

e e B W

1S, Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017



‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . + yEES

]

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

1S. Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017



M Oti_vati_n g Exa m p [e ‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . + yEES

]

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

Performing this for the full H-multiplication C := C + A - B the number of
truncations is reduced from 646 to 500.

1S. Borm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing and
Visualization in Science, 2017



‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let

A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.



‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure ApPLYUPDATES(C; )
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct( Ay v, By, Crgr );
APPLYUPDATES( Cy o );

else
Cr,'; = Cf‘c + Uf‘c;



‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure AppPLYUPDATES(C; s, type)
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct( Ay v, By, Crgr );
if type = recursive then
ApPPLYUPDATES( Gy o );

else
Ct,s = C[‘s F U[‘s;



‘H-Arithmetic with Accumulators

Numerical Experiments

‘H-matrix multiplication experiments are computed with H-matrix based on
Helmholtz SLP operator, K = 2 on a unit sphere with block-wise accuracy of 10~*.

Xeon E7-8857 (lvybridge)
n tetd taccu Speedup  #Trunc.

2.048 7.6 34 2.23x 39%
8.192 55.7 359 1.55x 52%
32786 3116 1991 1.56x 46%
131.072 18019 10244 1.76x 37%
524288 98364 53220 1.85x 30%

Xeon Platinum 8176 (Skylake)
n tstd taccu  Speedup

2.048 5.1 2.7 2.46x
8.192 385 236 1.63x
32786 2226 1368 1.63x
131072 12748 7139 1.79x




‘H-Arithmetic with Accumulators

H-1L.U factorization

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
for 0 < i< #S; do for 0 < i< #S; do
LU( Aeto Lot U )i for 0 < j<#S; do
for i+1<j<#S; do SOLVELL( Ay s Liiio Brs; );
SOLVELL( Av . L Uty ): for i+1<0<#8, do
SOWEUR( Ay s Lytir s )i for 0<j<#S; do
for i+1<j,0<#S; do MutmiPLy( =1, Le, i, Brysjo At sy )i
Muottipey( =1, Ly g, Usi Ay ); e
else
Ll,[Br,s = Asi

At,t = Lt,tUt,r;



‘H-Arithmetic with Accumulators

H-1L.U factorization

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
for 0 < i< #S; do for 0 < i< #S; do
LU( Aeto Lot U )i for 0 <j<#Ss do
for i+1<j<#S; do SOLVELL( Ay s Liiio Brs; );
SOLVELL( Av . L Uty ): for i+1<0<#8 do
SOLVEUR( Af/,f,rLf/,[,r Ut,,t, ); for 0 < ] < #Ss do
for i+1<j,0<#S; do AbbProouct(-1, Ly, 1, B,I‘SI,AU,,S/);
ApDPRODUCT(-T, Ly 1, Uyt Aty ): APPLYUPDATES( Ay, 5, );
APPLYUPDATES( Ay, ¢, )i alse
else
Lt,tBt,s = At,s?
Ar,z = Lt,[Ut,ri

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during ‘H-LU.



H_ LU fa Cto rtzatto n ‘H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
ApPLYUPDATES( A;;, nonrecursive ); ApPLYUPDATES( A; 5, nonrecursive );

for 0 < i< #S; do for 0 < i< #S; do
LU( Aeto Lot U )i for 0 < j<#S; do
for i+1<j<#S; do SOLVELL( Ay s Liiio Brs; );

SOLVELL( A["r/, Lt[.tt B U[w[/ ),

for i+1<?0<#S; do
SoLveUR( A,/,,,, Lw, Ut )

for 0 < j<#S; do
for i+1<j,0<#S; do ADDPRODUCT(-1, Ly, 1, Brs; 1 Aty 5));
ADDPRODUCT(-1, Ly, 1, Us, 1y, Aty 1y);

else
else ApPLYUPDATES( A, 5, recursive );
APPLYUPDATES( A ¢, recursive ); LetBrs = Arsi
At,t = Lt,tUt,r;

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during H-LU.

Instead, collecting and applying updates is separated and accumulators are shifted
down level by level in the hierarchy.



H_ LU fa Cto rtzatto n ‘H-Arithmetic with Accumulators

Xeon E7-8857 (lvybridge)
n tetd taccu Speedup  #Trunc.

2.048 19 13 1.50x 54%
8.192 145 10.6 1.37x 53%
32.786 86.1 52.8 1.63x 38%
131072 5375 2845 1.89x 27%
524288 3101.2 1548.0 2.00x 21%

Xeon Platinum 8176 (Skylake)

n tstd taceu Speedup
2.048 14 0.8 1.64x
8.192 10.0 7.1 1.41x

32.786 62.2 38.6 1.61x
131072 3871 2050 1.89x



Rank Growth and Accuracy

‘H-Arithmetic with Accumulators

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsy Memgey Increase
8.192 175 185 57 %
32.786 837 907 83%
131.072 3820 4210 102 %
524.288 17580 19590 114 %
e=10"" Errorgqqg Erroraca
8192 1310-3 2.710-3
32786  1.710-3 4110-3
131072 2.440-3 6.010-3
524288  3.610-3 8.810-3

(error is

Rank difference between standard and accumulator H-LU.



‘H-Arithmetic with Accumulators

Rank Growth and Accuracy

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsig  Memgaeew  Increase

8.192 249 253 1.0
32.786 1280 1310 2.3
131.072 6420 6560 2.2
524288 30840 31510 2.2

emory in M

o° o° of°

D o®

e=10"°% Errorgqq Erroraca

8192 44410-5  351p-D
32786  651p-5  6.749-5
131072  981p-5  1.040-4
524288 1.440-4  1510-4

error is ||/ — (LU) " Al]») Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.
The better the approximation, the less the difference.



Adding lasks



H—LU Wlth TaSkS Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for block
factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A; ¢, L, Us )
task(LU( A[,tr Lt,r: Ut,t ))r

for s€ 70, s >t do
task(SOLVELL( Arg, Ly, Urs ));
task(SoLVEUR( A, ¢, Lo, U ));

for s,re T, s, r>;t do
task(MuLTipLy( —1, Loy, Upr, A ));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jeti>]




H—LU Wlth TaSkS Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)
task(LU( Arr, Lee, Ure ));

if A;; is a block matrix then
for 0 <i<#S; do

DAGLU( Ayt Ley Us )i

for s 70, s >t do
task(SOLVELL( Arg, Ly, Urs ));
task(SoLVEUR( A, ¢, Lo, U ));

for s,re T, s, r>;t do
task(MuLTipLy( —1, Loy, Upr, A ));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jeti>]




H—LU Wlth TaSkS Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)

task(LU( Av, Ly, Un ) P 4"
if A;; is a block matrix then ,)( " 7
for 0 <i<#S; do
DAGLU( Aft,flr Lt,,t,: Ut_r,)i
i "o S—
for s 70 s>, ¢t do Vv

task(SoLVELL( Ars, Ley,, Urs ));
task(SoLVEUR( A, ¢, Lo, U ));

for s,re T, s, r>;t do
task(MuLTipLy( —1, Loy, Upr, A ));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jet i>]

Dependencies exist between factorisation and solve tasks on the same level or due
to updates tasks on different levels.



Adding Tasks

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.

procedure DAGLU(A; ¢, Ly s, Ut y)

task(LU( Are, Lee, U )
if A;; is a block matrix then

for 0 <i<#S; do
DAGLU( Ayt Li o Us )i

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .



Adding Tasks

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, Ly s, Ut y)
task(LU( At Lie U )); if U # 0 then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for U €U, do
U => task( ApPLYUPDATES(Ats) );

for 0 <i<#S; do
DAGLU( Ayt Li o Us )i

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If updates exist, an APPLYUPDATES task is required and depends on them.



Adding Tasks

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated
updates are applied following the hierarchy.

procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU( Act, Let, Ure )); if U; s # @ or task(parent) exists then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for 0 < i< #S; do for U €U, do
U => task( ApPLYUPDATES(Ats) );

DAGLU( At .0 Lt Up);

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If a block has an APPLYUPDATES task, so have all subblocks.



Adding Tasks

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU( Arr, Lee, Ure )); if U, s + @ or task(parent) exists then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for 0 <i<#S; do for UcU,. do
U == task( ApPLYUPDATES(A; ) );

DAGLU( At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SoLVeLL( Ars, Leg, Urs )i
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProoucT(—1, Ls,, Uy, r. Asr));

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
Parent tasks need to be executed before son tasks.



Adding Tasks

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure DAGLU(A; ¢, L¢ ¢, Usy) procedure BuiLDAPPLYTASKS(A; s)
task(LU( Ate, Let, U )); if U, s + @ or task(parent) exists then
if A is a block matrix then task( ApPLYUPDATES(A: 5) );
for 0 < i< #S; do for U €U, do
U => task( ApPLYUPDATES(Ats) );

DAGLU( At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SOLVELL( Acs, Ler, Urs ));
task(SOLVEUR( As, Lor, Use ));
if task(LU(A; ) or task(SoLVE(A; )) exists then
for s,re T, s r>;t do task( APPLYUPDATES(A;s) ) =
task(ApbProouct(—1, Ls 1, Uy r Asr)) task(LU(A;5)) / task(SoLVE(Ars, -, )
else
Let U; s be the set of all AbDPRODUCT for (¢,s)) € S,, do
BuiLbApPLYTASKS(Ay «);

tasks for Ay .

Dependency rules:
If LU/solve task exists, it depends on the AppLYUPDATES task.



Adding Tasks

Numerical Experiments

Experiments are computed for the Helmholtz example with n = 524.288
(lvybridge) and n = 131.072 (Skylake) .

Xeon E7-8857 (lvybridge)

2.0

# cores tstd taccu Speedup '§:>I
131012 15480 2.00x 18 .
12 2853 1573 181 N\
24 1564 912 1.72x 16 R\
48 991 669 1.48x » A\
Xeon Platinum 8176 (Skylake), no HT = e
# cores tstd taccu Speedup
1 3871 2050 1.89x H
2860 212 122 1.74x | o obridge
56 143 9.9 1.44x Pl Shlake

124 8 12 16 20 24 28 32 36 40 44 48 52 56

(ttme n seconds)
# cores



Further Modifications



Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the
accumulator. Instead, this may be postponed until all updates are available and

then applied together.

For this, an additional set Pfge“ of pending direct updates is introduced:

procedure ADDPRoDUCTLAZY(A; ,, B; s, G 5) procedure AppPLYUPDATESLAZY(C; o)
if A:i. B, G s are block matrices then if G is a block matrix then
Pis :=Pis U{(Ar Brs)}: for (A B) € P do
else Us = Us +A- B,
Pract =Pt U {(Aer, Brs)); for €8, s €S, do

U[’,S’ = Ut’,s’ 4 Ut,slt’,s’;
for (Af,rr Br,s) S Pr,sy resS, do
AbbProbuct(Ay 7, By s, Crs);

AppLYUPDATES( Cy s );

else
Ct,s = Cr,s + Ut,s;

Lazy evaluation applies to the accumulators per level and not the destination block.



Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the
accumulator. Instead, this may be postponed until all updates are available and

then applied together.

For this, an additional set Pfge“ of pending direct updates is introduced:

procedure ADDPRoDUCTLAZY(A; ,, B; s, G 5) procedure AppPLYUPDATESLAZY(C; o)
if A:i. B, G s are block matrices then if G is a block matrix then
Pis :=Pis U{(Ar Brs)}: for U € sort({A- B: (A B) € Piretl) do
else Upsi= U s+ U;
Phect =Pt U {(Arr, Bro)k: for ' €8,5 €S8, do

U[’,S’ = Ut’,s’ 4 Ut,slt’,s’;
for (Af,rr Br,s) S Pr,sy resS, do
AbbProbuct(Ay 7, By s, Crs);

AppLYUPDATES( Cy s );

else
Ct,s = Cr,s + Ut,s;

Lazy evaluation applies to the accumulators per level and not the destination block.

Since all updates are available, it also permits update sorting.



Further Modifications

Up to now, all direct updates are evaluated and applied immediately to the
accumulator. Instead, this may be postponed until all updates are available and

then applied together.

For this, an additional set Pfge“ of pending direct updates is introduced:

procedure ADDPRoDUCTLAZY(A; ,, B; s, G 5) procedure AppPLYUPDATESLAZY(C; o)
if A:i. B, G s are block matrices then if G is a block matrix then
Pis :=Pis U{(Ar Brs)}: U = batch({A- B : (A, B) € Puect});
else Uis == U s + reduce(ld);
Piect . pdrect | [(A, ., B, J)}; for ' €8, €8, do

Ups = Up g + Ussles;
for (Ai;, B.s) € Pis, i’ €S, do
AbbPropuct(Ay,, By, Co.or);

AppPLYUPDATES( Cy o );

else
Cs=Cs+ U

Lazy evaluation applies to the accumulators per level and not the destination block.

Since all updates are available, it also permits update sorting or batch execution.



Further Modifications

Numerical Tests

‘H-matrix multiplication

n teager tlazg
2.048 3.4 34
8.192 359 359
32786 1991 1950
131.072 10244 10231

H-LU factorization
eager lazy
n Time Error  Time Error

2.048 1.3 1.090-3 14 1.290-3
8192 106 2740-3 108 2.34p-3
32786 528 421p-3 542 3.640-3
131072 2845 6.010-3 2918 5440-3

All computed without update sorting.



CO n C [ u S i_o n Further Modifications

Accumulator based H-arithmetic significantly reduces the number of truncations
during H-arithmetic with a possible reduction in complexity.

Modification of existing implementations is simple and straight forward.

Parallel speedup is slightly reduced compared to standard H-arithmetic but still
significant overall speedup.



CO n C[usi_o n Further Modifications

Accumulator based H-arithmetic significantly reduces the number of truncations
during H-arithmetic with a possible reduction in complexity.

Modification of existing implementations is simple and straight forward.

Parallel speedup is slightly reduced compared to standard H-arithmetic but still
significant overall speedup.




