
Accumulator based Task-parallel
H-Factorization

Steffen Börm Ronald KriemannUniversity of Kiel Max Planck Inst. for Math. i.t.S.

SIAM PP18

H-Arithmetic with Accumulators

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 2

Motivating Example H-Arithmetic with Accumulators

Let A, B and C be H-matrices with the shownstructure.For the multiplication C := A · B several updatesfrom different levels of the H-hierarchy are applied toa single block.As an example, the updates for Ct′,s′ are:

s s′

t
t′

+=

:=

+=
+= +=
+=

Similar updates are computed for all other sub blocks of the parent block Ct,s.

In a classical implementation, all sub multiplications sum up to 24 truncations forthe 3 low-rank blocks in Ct,s.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 3

Motivating Example H-Arithmetic with Accumulators

Let A, B and C be H-matrices with the shownstructure.For the multiplication C := A · B several updatesfrom different levels of the H-hierarchy are applied toa single block.As an example, the updates for Ct′,s′ are:

s s′

t
t′

:= +=
+= +=
+=

Similar updates are computed for all other sub blocks of the parent block Ct,s.In a classical implementation, all sub multiplications sum up to 24 truncations forthe 3 low-rank blocks in Ct,s.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 3

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +

+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +

+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +

+=
We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +

+=
We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.

Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +
+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.
1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 4

Arithmetic H-Arithmetic with Accumulators

Let I be an index set, T (I) a cluster tree over I and T = T (I × I) a block clustertree over T (I). For t ∈ T (I) let St denote the set of sons of t . Furthermore, let
A, B, C be H-matrices over T .For each matrix block Ct,s we define an accumulator Ut,s ∈ Ct×s and a set Pt,s of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g.,
Ut,s = 0 and Pt,s = ∅ for all (t, s) ∈ T .

H-multiplication is split into two functions, which collect the updates and shiftthem down to sub blocks:
procedure AddProduct(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Ut,s := Ut,s + At,r · Br,s;

procedure ApplyUpdates(Ct,s)
if Ct,s is a block matrix then

for t′ ∈ St , s′ ∈ Ss do
Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);ApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 5

Arithmetic H-Arithmetic with Accumulators

Let I be an index set, T (I) a cluster tree over I and T = T (I × I) a block clustertree over T (I). For t ∈ T (I) let St denote the set of sons of t . Furthermore, let
A, B, C be H-matrices over T .For each matrix block Ct,s we define an accumulator Ut,s ∈ Ct×s and a set Pt,s of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g.,
Ut,s = 0 and Pt,s = ∅ for all (t, s) ∈ T .
H-multiplication is split into two functions, which collect the updates and shiftthem down to sub blocks:
procedure AddProduct(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Ut,s := Ut,s + At,r · Br,s;

procedure ApplyUpdates(Ct,s)
if Ct,s is a block matrix then

for t′ ∈ St , s′ ∈ Ss do
Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);ApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 5

Arithmetic H-Arithmetic with Accumulators

Let I be an index set, T (I) a cluster tree over I and T = T (I × I) a block clustertree over T (I). For t ∈ T (I) let St denote the set of sons of t . Furthermore, let
A, B, C be H-matrices over T .For each matrix block Ct,s we define an accumulator Ut,s ∈ Ct×s and a set Pt,s of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g.,
Ut,s = 0 and Pt,s = ∅ for all (t, s) ∈ T .
H-multiplication is split into two functions, which collect the updates and shiftthem down to sub blocks:
procedure AddProduct(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Ut,s := Ut,s + At,r · Br,s;

procedure ApplyUpdates(Ct,s , type)
if Ct,s is a block matrix then

for t′ ∈ St , s′ ∈ Ss do
Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);
if type = recursive thenApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 5

Numerical Experiments H-Arithmetic with Accumulators

H-matrix multiplication experiments are computed with H-matrix based onHelmholtz SLP operator, κ = 2 on a unit sphere with block-wise accuracy of 10−4.Xeon E7-8857 (Ivybridge)
n tstd taccu Speedup #Trunc.2.048 7.6 3.4 2.23x 39%8.192 55.7 35.9 1.55x 52%32.786 311.6 199.1 1.56x 46%131.072 1801.9 1024.4 1.76x 37%524.288 9836.4 5322.0 1.85x 30%

Xeon Platinum 8176 (Skylake)
n tstd taccu Speedup2.048 5.1 2.1 2.46x8.192 38.5 23.6 1.63x32.786 222.6 136.8 1.63x131.072 1274.8 713.9 1.79x

(time in seconds)
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 6

H-LU factorization H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirelyoff H-matrix multiplications:
procedure LU(At,t , Lt,t , Ut,t)

if At,t is a block matrix then

ApplyUpdates(At,t , nonrecursive);

for 0 ≤ i < #St doLU(Ati ,ti , Lti ,ti , Uti ,ti);
for i + 1 ≤ j < #St doSolveLL(Ati ,tj , Lti ,ti , Uti ,tj);SolveUR(Atj ,ti , Ltj ,ti , Uti,ti);
for i + 1 ≤ j , ` < #St doMultiply(−1, Ltj ,ti , Uti ,t` , Atj ,t`);

else

ApplyUpdates(At,t , recursive);

At,t = Lt,tUt,t ;

procedure SolveLL(At,s, Lt,t , Bt,s)
if At,s, Lt,t , Bt,s are block matrices then

ApplyUpdates(At,s , nonrecursive);

for 0 ≤ i < #St do
for 0 ≤ j < #Ss doSolveLL(Ati ,sj , Lti,ti , Bti,sj);
for i + 1 ≤ ` < #St do

for 0 ≤ j < #Ss doMultiply(−1, Lt` ,ti , Bti,sj , At` ,sj);
else

ApplyUpdates(At,s , recursive);

Lt,tBt,s = At,s;

A direct replacement of the H-multiplication is not optimal, since it does nothandle multiple updates during H-LU.Instead, collecting and applying updates is separated and accumulators are shifteddown level by level in the hierarchy.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 7

H-LU factorization H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirelyoff H-matrix multiplications:
procedure LU(At,t , Lt,t , Ut,t)

if At,t is a block matrix then

ApplyUpdates(At,t , nonrecursive);

for 0 ≤ i < #St doLU(Ati ,ti , Lti ,ti , Uti ,ti);
for i + 1 ≤ j < #St doSolveLL(Ati ,tj , Lti ,ti , Uti ,tj);SolveUR(Atj ,ti , Ltj ,ti , Uti,ti);
for i + 1 ≤ j , ` < #St doAddProduct(-1, Ltj ,ti , Uti,t` , Atj ,t`);ApplyUpdates(Atj ,t`);

else

ApplyUpdates(At,t , recursive);

At,t = Lt,tUt,t ;

procedure SolveLL(At,s, Lt,t , Bt,s)
if At,s, Lt,t , Bt,s are block matrices then

ApplyUpdates(At,s , nonrecursive);

for 0 ≤ i < #St do
for 0 ≤ j < #Ss doSolveLL(Ati ,sj , Lti,ti , Bti,sj);
for i + 1 ≤ ` < #St do

for 0 ≤ j < #Ss doAddProduct(-1, Lt` ,ti , Bti,sj , At` ,sj);ApplyUpdates(At` ,sj);
else

ApplyUpdates(At,s , recursive);

Lt,tBt,s = At,s;
A direct replacement of the H-multiplication is not optimal, since it does nothandle multiple updates during H-LU.

Instead, collecting and applying updates is separated and accumulators are shifteddown level by level in the hierarchy.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 7

H-LU factorization H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirelyoff H-matrix multiplications:
procedure LU(At,t , Lt,t , Ut,t)

if At,t is a block matrix thenApplyUpdates(At,t , nonrecursive);
for 0 ≤ i < #St doLU(Ati ,ti , Lti ,ti , Uti ,ti);

for i + 1 ≤ j < #St doSolveLL(Ati ,tj , Lti ,ti , Uti ,tj);SolveUR(Atj ,ti , Ltj ,ti , Uti,ti);
for i + 1 ≤ j , ` < #St doAddProduct(-1, Ltj ,ti , Uti,t` , Atj ,t`);

elseApplyUpdates(At,t , recursive);
At,t = Lt,tUt,t ;

procedure SolveLL(At,s, Lt,t , Bt,s)
if At,s, Lt,t , Bt,s are block matrices thenApplyUpdates(At,s , nonrecursive);

for 0 ≤ i < #St do
for 0 ≤ j < #Ss doSolveLL(Ati ,sj , Lti,ti , Bti,sj);
for i + 1 ≤ ` < #St do

for 0 ≤ j < #Ss doAddProduct(-1, Lt` ,ti , Bti,sj , At` ,sj);
elseApplyUpdates(At,s , recursive);

Lt,tBt,s = At,s;
A direct replacement of the H-multiplication is not optimal, since it does nothandle multiple updates during H-LU.Instead, collecting and applying updates is separated and accumulators are shifteddown level by level in the hierarchy.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 7

H-LU factorization H-Arithmetic with Accumulators

Xeon E7-8857 (Ivybridge)
n tstd taccu Speedup #Trunc.2.048 1.9 1.3 1.50x 54%8.192 14.5 10.6 1.37x 53%32.786 86.1 52.8 1.63x 38%131.072 537.5 284.5 1.89x 27%524.288 3101.2 1548.0 2.00x 21%

Xeon Platinum 8176 (Skylake)
n tstd taccu Speedup2.048 1.4 0.8 1.64x8.192 10.0 7.1 1.41x32.786 62.2 38.6 1.61x131.072 387.1 205.0 1.89x

(time in seconds)

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 8

Rank Growth and Accuracy H-Arithmetic with Accumulators

Due to the different summation order of low-rank blocks, accumulator based
H-arithmetic shows higher ranks compared to standard H-arithmetic.Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memstd Memaccu Increase8.192 175 185 5.7 %32.786 837 907 8.3 %131.072 3820 4210 10.2 %524.288 17580 19590 11.4 %(memory in MB)
ε = 10−4 Errorstd Erroraccu8.192 1.310-3 2.710-332.786 1.710-3 4.110-3131.072 2.410-3 6.010-3524.288 3.610-3 8.810-3(error is ||I − (LU)−1A||2) Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.The better the approximation, the less the difference.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 9

Rank Growth and Accuracy H-Arithmetic with Accumulators

Due to the different summation order of low-rank blocks, accumulator based
H-arithmetic shows higher ranks compared to standard H-arithmetic.Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memstd Memaccu Increase8.192 249 253 1.6 %32.786 1280 1310 2.3 %131.072 6420 6560 2.2 %524.288 30840 31510 2.2 %(memory in MB)
ε = 10−6 Errorstd Erroraccu8.192 4.410-5 3.510-532.786 6.510-5 6.710-5131.072 9.810-5 1.010-4524.288 1.410-4 1.510-4(error is ||I − (LU)−1A||2) Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.The better the approximation, the less the difference.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 9

Adding Tasks

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 10

H-LU with Tasks Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for blockfactorisation, solving and updates based on the recursive H-LU algorithm modifiedto have global scope.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));

if At,t is a block matrix then
for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);

for s ∈ T `(t), s >I t do
task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(Multiply(−1, Ls,t , Ut,r , As,r));

With the level set T `(t) := {s ∈ T : level(s) = level(t)} and the index set relation
s >I t :⇔ ∀i ∈ s, j ∈ t : i > j .

Dependencies exist between factorisation and solve tasks on the same level or dueto updates tasks on different levels.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 11

H-LU with Tasks Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for blockfactorisation, solving and updates based on the recursive H-LU algorithm modifiedto have global scope.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(Multiply(−1, Ls,t , Ut,r , As,r));

With the level set T `(t) := {s ∈ T : level(s) = level(t)} and the index set relation
s >I t :⇔ ∀i ∈ s, j ∈ t : i > j .

Dependencies exist between factorisation and solve tasks on the same level or dueto updates tasks on different levels.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 11

H-LU with Tasks Adding Tasks

The standard, task-based H-LU factorisation defines individual tasks for blockfactorisation, solving and updates based on the recursive H-LU algorithm modifiedto have global scope.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(Multiply(−1, Ls,t , Ut,r , As,r));

With the level set T `(t) := {s ∈ T : level(s) = level(t)} and the index set relation
s >I t :⇔ ∀i ∈ s, j ∈ t : i > j .Dependencies exist between factorisation and solve tasks on the same level or dueto updates tasks on different levels.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 11

Accumulator H-LU with Tasks Adding Tasks

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ then

task(ApplyUpdates(At,s));
for U ∈ Ut,s do

U task(ApplyUpdates(At,s));

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task(ApplyUpdates(At,s))

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′);

Dependency rules:

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 12

Accumulator H-LU with Tasks Adding Tasks

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ then

task(ApplyUpdates(At,s));
for U ∈ Ut,s do

U task(ApplyUpdates(At,s));

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task(ApplyUpdates(At,s))

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′);

Dependency rules:If updates exist, an ApplyUpdates task is required and depends on them.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 12

Accumulator H-LU with Tasks Adding Tasks

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task(ApplyUpdates(At,s));
for U ∈ Ut,s do

U task(ApplyUpdates(At,s));

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task(ApplyUpdates(At,s))

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′);

Dependency rules:If a block has an ApplyUpdates task, so have all subblocks.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 12

Accumulator H-LU with Tasks Adding Tasks

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task(ApplyUpdates(At,s));
for U ∈ Ut,s do

U task(ApplyUpdates(At,s));
if task(parent) exists then

task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task(ApplyUpdates(At,s))

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′);

Dependency rules:Parent tasks need to be executed before son tasks.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 12

Accumulator H-LU with Tasks Adding Tasks

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t)

task(LU(At,t , Lt,t , Ut,t));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU(Ati ,ti , Lti ,ti , Uti ,ti);
for s ∈ T `(t), s >I t do

task(SolveLL(At,s, Lt,ti , Ut,s));
task(SolveUR(As,t , Ls,t , Ut,t));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task(ApplyUpdates(At,s));
for U ∈ Ut,s do

U task(ApplyUpdates(At,s));
if task(parent) exists then

task(parent) task(ApplyUpdates(At,s));
if task(LU(At,s)) or task(Solve(At,s)) exists then

task(ApplyUpdates(At,s))
task(LU(At,s)) / task(Solve(At,s, ·, ·))

else
for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′);

Dependency rules:If LU/solve task exists, it depends on the ApplyUpdates task.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 12

Numerical Experiments Adding Tasks

Experiments are computed for the Helmholtz example with n = 524.288(Ivybridge) and n = 131.072 (Skylake) .
Xeon E7-8857 (Ivybridge)# cores tstd taccu Speedup1 3101.2 1548.0 2.00x12 285.3 157.3 1.81x24 156.4 91.2 1.72x48 99.1 66.9 1.48x

Xeon Platinum 8176 (Skylake), no HT# cores tstd taccu Speedup1 387.1 205.0 1.89x28 21.2 12.2 1.74x56 14.3 9.9 1.44x
(time in seconds) 12 4 8 12 16 20 24 28 32 36 40 44 48 52 56

cores

0.8

1.0

1.2

1.4

1.6

1.8

2.0

t s
td
/t
a
cc
u

Ivybridge

Skylake

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 13

Further Modifications

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 14

Further Modifications
Up to now, all direct updates are evaluated and applied immediately to theaccumulator. Instead, this may be postponed until all updates are available andthen applied together.For this, an additional set Pdirect

t,s of pending direct updates is introduced:
procedure AddProductLazy(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Pdirect

t,s := Pdirect
t,s ∪ {(At,r , Br,s)};

procedure ApplyUpdatesLazy(Ct,s)
if Ct,s is a block matrix then

for (A, B) ∈ Pdirect
t,s do

Ut,s := Ut,s + A · B;
for t′ ∈ St , s′ ∈ Ss do

Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);ApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;Lazy evaluation applies to the accumulators per level and not the destination block.

Since all updates are available, it also permits update sorting

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 15

Further Modifications
Up to now, all direct updates are evaluated and applied immediately to theaccumulator. Instead, this may be postponed until all updates are available andthen applied together.For this, an additional set Pdirect

t,s of pending direct updates is introduced:
procedure AddProductLazy(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Pdirect

t,s := Pdirect
t,s ∪ {(At,r , Br,s)};

procedure ApplyUpdatesLazy(Ct,s)
if Ct,s is a block matrix then

for U ∈ sort({A · B : (A, B) ∈ Pdirect
t,s

}) do
Ut,s := Ut,s + U ;

for t′ ∈ St , s′ ∈ Ss do
Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);ApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;Lazy evaluation applies to the accumulators per level and not the destination block.Since all updates are available, it also permits update sorting.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 15

Further Modifications
Up to now, all direct updates are evaluated and applied immediately to theaccumulator. Instead, this may be postponed until all updates are available andthen applied together.For this, an additional set Pdirect

t,s of pending direct updates is introduced:
procedure AddProductLazy(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Pdirect

t,s := Pdirect
t,s ∪ {(At,r , Br,s)};

procedure ApplyUpdatesLazy(Ct,s)
if Ct,s is a block matrix then

U := batch({A · B : (A, B) ∈ Pdirect
t,s

});
Ut,s := Ut,s + reduce(U);
for t′ ∈ St , s′ ∈ Ss do

Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct(At′,r′ , Br′,s′ , Ct′,s′);ApplyUpdates(Ct′,s′);

else
Ct,s := Ct,s + Ut,s;Lazy evaluation applies to the accumulators per level and not the destination block.Since all updates are available, it also permits update sorting or batch execution.

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 15

Numerical Tests Further Modifications

H-matrix multiplication
n teager tlazy2.048 3.4 3.48.192 35.9 35.932.786 199.1 195.0131.072 1024.4 1023.1
H-LU factorization

eager lazy
n Time Error Time Error2.048 1.3 1.010-3 1.4 1.210-38.192 10.6 2.710-3 10.8 2.310-332.786 52.8 4.210-3 54.2 3.610-3131.072 284.5 6.010-3 291.8 5.410-3

All computed without update sorting.
Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 16

Conclusion Further Modifications

Accumulator based H-arithmetic significantly reduces the number of truncationsduring H-arithmetic with a possible reduction in complexity.Modification of existing implementations is simple and straight forward.Parallel speedup is slightly reduced compared to standard H-arithmetic but stillsignificant overall speedup.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 17

Conclusion Further Modifications

Accumulator based H-arithmetic significantly reduces the number of truncationsduring H-arithmetic with a possible reduction in complexity.Modification of existing implementations is simple and straight forward.Parallel speedup is slightly reduced compared to standard H-arithmetic but stillsignificant overall speedup.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

Kriemann/Börm, »Accumulator based Task-parallel H-Factorization« 17

