Parallel Black Box \mathcal{H}-LU Preconditioning

Ronald Kriemann MPI MIS Leipzig

Workshop "Complex Systems" METU

2009-05-14/15

Overview

(1) \mathcal{H}-Matrices
(2) Algebraic Clustering
(3) Algebraic Admissibility
(4) Nested Dissection
(5) Numerical Experiments

\mathcal{H}-Matrices

Uniformly elliptic 2nd order PDE

$$
\operatorname{div} \alpha(x) \nabla u(x)=f(x), \quad x \in \Omega
$$

with Dirichlet/Neumann boundary conditions.
Galerkin discretisation

$$
A x=b, \quad A_{i j}=\left\langle\nabla \varphi_{i}, \alpha \nabla \varphi_{j}\right\rangle_{L^{2}(\Omega)}
$$

with basis functions

$$
\varphi_{i}: \Omega \rightarrow \mathbb{R}, \quad i \in I=\{1, \ldots, N\}
$$

Goal: Solve the system fast and robust using LU factorisation of A as preconditioner.
Problem: LU factors are usually prohibitively dense.
Solution: Compute approximate LU factorisation using \mathcal{H}-matrices with (almost) linear complexity.

\mathcal{H}-Matrices what are \mathcal{H}-Matrices?

A matrix $M \in \mathbb{R}^{n \times m}$ of rank $\leq k$ can be represented as

$$
M=U V^{T}, \quad U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}
$$

- $\mathrm{R}(\mathrm{k})$-matrix format

\mathcal{H}-Matrices what are \mathcal{H}-Matrices?

A matrix $M \in \mathbb{R}^{n \times m}$ of rank $\leq k$ can be represented as

$$
M=U V^{T}, \quad U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}
$$

- $\mathrm{R}(\mathrm{k})$-matrix format

\mathcal{H}-Matrices Clustering

Domain

Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree

\mathcal{H}-Matrices Clustering

Domain
Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree

\mathcal{H}-Matrices Clustering

Domain
Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree

\mathcal{H}-Matrices Clustering

Domain
Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree

\mathcal{H}-Matrices
 Clustering

Domain

Construct cluster tree using geometrical data:

Ω_{S}

Matrix

Construct block cluster tree with admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s), \quad \eta>0
$$

\mathcal{H}-Matrices Clustering

Domain

Construct cluster tree using geometrical data:

Ω_{s}

Matrix

Construct block cluster tree with admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s), \quad \eta>0
$$

\mathcal{H}-Matrices

Clustering

Domain

Construct cluster tree using geometrical data:

00000000 /00000000			
00000000 -00000000 00000000			
00000000 00000000 00000000 000			
00000000 ,00000000			
-0000000 0000000			
-0000000	-0,		

Matrix

Construct block cluster tree with admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s), \quad \eta>0
$$

\mathcal{H}-Matrices Matrix Structure

- $\mathcal{O}(n)$ blocks

\mathcal{H}-Matrices Matrix Structure

- $\mathcal{O}(n)$ blocks
- Small red blocks: full matrices

\mathcal{H}-Matrices Matrix Structure

- $\mathcal{O}(n)$ blocks
- Small red blocks: full matrices
- All other blocks: $R(k)$-matrices

\mathcal{H}-Matrices

- block-wise: exponential decay of singular values

\mathcal{H}-Matrices Arithmetic

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\
A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}
\end{array}\right)
$$

\mathcal{H}-Matrices Arithmetic

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:
$\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}\end{array}\right)$
But, addition of low-rank matrices increases the rank and finally produces full-rank matrices.
To limit complexity, a truncated addition is performed using SVD:

$$
A_{1} B_{1}^{T}+A_{2} B_{2}^{T}=: C D^{T} \quad \rightarrow \quad U S V^{T} \quad \rightarrow \quad C^{\prime} D^{T}
$$

with (predefined) $\operatorname{rank}\left(C^{\prime} D^{\prime T}\right)<\operatorname{rank}\left(C D^{T}\right)$.

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:
$\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11}+A_{22} \cdot B_{21} & A_{21} \cdot B_{12}+A_{22} \cdot B_{22}\end{array}\right)$
But, addition of low-rank matrices increases the rank and finally produces full-rank matrices.
To limit complexity, a truncated addition is performed using SVD:

$$
A_{1} B_{1}^{T}+A_{2} B_{2}^{T}=: C D^{T} \quad \rightarrow \quad U S V^{T} \quad \rightarrow \quad C^{\prime} D^{T}
$$

with (predefined) $\operatorname{rank}\left(C^{\prime} D^{\prime T}\right)<\operatorname{rank}\left(C D^{T}\right)$.

Complexity

truncation	$\mathcal{O}(n)$	multiplication	$\mathcal{O}\left(n \log ^{2} n\right)$
storage	$\mathcal{O}(n \log n)$	inversion	$\mathcal{O}\left(n \log ^{2} n\right)$
matrix \times vector	$\mathcal{O}(n \log n)$	triangular solve	$\mathcal{O}\left(n \log ^{2} n\right)$
addition	$\mathcal{O}(n \log n)$	LU decomposition	$\mathcal{O}\left(n \log ^{2} n\right)$

\mathcal{H}-Matrices Summary

To solve $A x=b$ using \mathcal{H}-LU factorisation:
(1) construct cluster tree using geometrical data,
(2) construct block cluster tree using admissibility condition (based on geometrical data),
(3) build \mathcal{H}-matrix representation of A,
(4) perform \mathcal{H}-LU factorisation (with approximation due to truncated addition),
(5) solve $A x=b$ preconditioned with \mathcal{H}-LU approximated A^{-1}.

To solve $A x=b$ using \mathcal{H}-LU factorisation:
(1) construct cluster tree using geometrical data,
(2) construct block cluster tree using admissibility condition (based on geometrical data),
(3) build \mathcal{H}-matrix representation of A,
(4) perform \mathcal{H}-LU factorisation (with approximation due to truncated addition),
(5) solve $A x=b$ preconditioned with \mathcal{H}-LU approximated A^{-1}.

But what to do if no geometry information is available?

Algebraic Clustering

Algebraic Clustering Motivation

Consider

$$
-\Delta u=0 \quad \text { in } \Omega=[0,1]^{2}
$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_{i}, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Algebraic Clustering Motivation

Consider

$$
-\Delta u=0 \quad \text { in } \Omega=[0,1]^{2}
$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_{i}, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Define the matrix graph $G(A)=\left(V_{A}, E_{A}\right)$ of A as

$$
V_{A}:=I, \quad E_{A}:=\left\{(i, j): i \neq j \wedge a_{i j} \neq 0\right\}
$$

i.e. graph corresponds to sparsity pattern of stiffness matrix.

Algebraic Clustering Motivation

Consider

$$
-\Delta u=0 \quad \text { in } \Omega=[0,1]^{2}
$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_{i}, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Define the matrix graph $G(A)=\left(V_{A}, E_{A}\right)$ of A as

$$
V_{A}:=I, \quad E_{A}:=\left\{(i, j): i \neq j \wedge a_{i j} \neq 0\right\}
$$

i.e. graph corresponds to sparsity pattern of stiffness matrix.

Algebraic Clustering Motivation

Define distance $\operatorname{dist}_{G}(i, j)$ between nodes $i, j \in I$ as length of shortest path in $G(A)$. Then, for $i, j \in I$ we have:

$$
\left\|x_{i}-x_{j}\right\|_{2} \leq \operatorname{dist}_{G}(i, j) h
$$

i.e. distance in \mathbb{R}^{2} is mapped to distance in $G(A)$:

$$
\begin{array}{ll}
\left\|x_{i}-x_{j}\right\|_{2}=\sqrt{13} h, & \operatorname{dist}_{G}(i, j)=5 \\
\left\|x_{i}-x_{k}\right\|_{2}=\sqrt{5} h, & \operatorname{dist}_{G}(i, k)=3
\end{array}
$$

Algebraic Clustering Motivation

Define distance $\operatorname{dist}_{G}(i, j)$ between nodes $i, j \in I$ as length of shortest path in $G(A)$. Then, for $i, j \in I$ we have:

$$
\left\|x_{i}-x_{j}\right\|_{2} \leq \operatorname{dist}_{G}(i, j) h,
$$

i.e. distance in \mathbb{R}^{2} is mapped to distance in $G(A)$:

$$
\begin{array}{ll}
\left\|x_{i}-x_{j}\right\|_{2}=\sqrt{13} h, & \operatorname{dist}_{G}(i, j)=5 \\
\left\|x_{i}-x_{k}\right\|_{2}=\sqrt{5} h, & \operatorname{dist}_{G}(i, k)=3
\end{array}
$$

In model problem: since nodes in $G(A)$ with small distance are also geometrically neighboured, one can use graph distance to cluster indices.

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters

Algebraic Clustering Clustering via Breadth First Search

Algorithm:
(1) determine two nodes $i, j \in V_{A}$ with (almost) maximal distance,
(2) perform simultaneous BFS from i and j to construct sub clusters:

- per step, add unvisited neighbours of nodes in sub clusters
(3) recurse in sub graphs

Algebraic Clustering Clustering via General Graph Partitioning

In graph theory, the graph partitioning problem is defined as:
Given a graph $G=(V, E)$ a partitioning $P=\left\{V_{1}, V_{2}\right\}$, with $V_{1} \cap V_{2}=\emptyset$ and $V=V_{1} \cup V_{2}$, of V is sought, such that

$$
\begin{aligned}
& \# V_{1} \sim \# V_{2} \quad \text { and } \\
& \#\left\{(i, j) \in E: \quad i \in V_{1} \wedge j \in V_{2}\right\}=\text { min. } \quad \text { (edge-cut) }
\end{aligned}
$$

A small edge-cut corresponds to a low-rank coupling of matrix blocks.

Algebraic Clustering Clustering via General Graph Partitioning

In graph theory, the graph partitioning problem is defined as:
Given a graph $G=(V, E)$ a partitioning $P=\left\{V_{1}, V_{2}\right\}$, with $V_{1} \cap V_{2}=\emptyset$ and $V=V_{1} \cup V_{2}$, of V is sought, such that

$$
\begin{aligned}
& \# V_{1} \sim \# V_{2} \quad \text { and } \\
& \#\left\{(i, j) \in E: \quad i \in V_{1} \wedge j \in V_{2}\right\}=\text { min. } \quad \text { (edge-cut) }
\end{aligned}
$$

A small edge-cut corresponds to a low-rank coupling of matrix blocks.

Although the graph partitioning problem is NP-hard good approximation algorithms exist, e.g. multilevel or spectral methods. Furthermore, they are available in open source packages, e.g. METIS, Chaco or Scotch.

Algebraic Admissibility

Algebraic Admissibility Definition

To apply the standard admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s)
$$

for a block cluster $(t, s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

Algebraic Admissibility Definition

To apply the standard admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s)
$$

for a block cluster $(t, s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

- For $V_{1}, V_{2} \subset V$, the distance between V_{1} and V_{2} is defined as

$$
\operatorname{dist}_{G}\left(V_{1}, V_{2}\right):=\min _{i \in V_{1}, j \in V_{2}} \operatorname{dist}_{G}(i, j)
$$

- The diameter of a sub graph induced by $V^{\prime} \subseteq V$ is defined as

$$
\operatorname{diam}_{G}\left(V^{\prime}\right):=\max _{i, j \in V^{\prime}} \operatorname{dist}_{G}(i, j)
$$

Algebraic Admissibility Definition

To apply the standard admissibility condition

$$
\min (\operatorname{diam}(t), \operatorname{diam}(s)) \leq \eta \operatorname{dist}(t, s)
$$

for a block cluster $(t, s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

- For $V_{1}, V_{2} \subset V$, the distance between V_{1} and V_{2} is defined as

$$
\operatorname{dist}_{G}\left(V_{1}, V_{2}\right):=\min _{i \in V_{1}, j \in V_{2}} \operatorname{dist}_{G}(i, j)
$$

- The diameter of a sub graph induced by $V^{\prime} \subseteq V$ is defined as

$$
\operatorname{diam}_{G}\left(V^{\prime}\right):=\max _{i, j \in V^{\prime}} \operatorname{dist}_{G}(i, j)
$$

Problem: diameter and distance in G costs $\mathcal{O}\left(n^{2}\right)$.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_{G}(i, j)=$ max,
- $\operatorname{diam}_{G}(t) \leq 2 \operatorname{dist}_{G}(i, j)=: \widetilde{\operatorname{diam}}$,
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\operatorname{diam}}$ layers,

- if $\tilde{t} \cap s=\emptyset$ then (t, s) is admissible.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_{G}(i, j)=$ max,
- $\operatorname{diam}_{G}(t) \leq 2 \operatorname{dist}_{G}(i, j)=: \widetilde{\operatorname{diam}}$,
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\operatorname{diam}}$ layers,

- if $\tilde{t} \cap s=\emptyset$ then (t, s) is admissible.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_{G}(i, j)=$ max,
- $\operatorname{diam}_{G}(t) \leq 2 \operatorname{dist}_{G}(i, j)=: \widetilde{\operatorname{diam}}$,
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\operatorname{diam}}$ layers,

- if $\tilde{t} \cap s=\emptyset$ then (t, s) is admissible.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_{G}(i, j)=$ max,
- $\operatorname{diam}_{G}(t) \leq 2 \operatorname{dist}_{G}(i, j)=: \widetilde{\operatorname{diam}}$,
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\operatorname{diam}}$ layers,

- if $\tilde{t} \cap s=\emptyset$ then (t, s) is admissible.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_{G}(i, j)=$ max,
- $\operatorname{diam}_{G}(t) \leq 2 \operatorname{dist}_{G}(i, j)=: \widetilde{\operatorname{diam}}$,
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\operatorname{diam}}$ layers,

- if $\tilde{t} \cap s=\emptyset$ then (t, s) is admissible.

With usual FEM sparsity patterns, this procedure has complexity

$$
\mathcal{O}(\# t) .
$$

Nested Dissection

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Matrix graph:

Matrix:

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Matrix graph:

Matrix:

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Matrix graph:

Matrix:

Advantages of Nested Dissection

- zero blocks do not fill up during \mathcal{H}-LU factorisation,
- blocks can be computed in parallel.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H}-matrices the vertex separator has to be further partitioned to form a cluster tree.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H}-matrices the vertex separator has to be further partitioned to form a cluster tree.

Problem: restricting G to nodes in vertex separator \mathcal{V} might remove important edges, e.g.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H}-matrices the vertex separator has to be further partitioned to form a cluster tree.

Problem: restricting G to nodes in vertex separator \mathcal{V} might remove important edges, e.g.

Solution: modify previous BFS based algorithm to perform partitioning in a surrounding of the vertex separator.

Numerical Experiments

Numerical Experiments \quad Comparison with Geom. Clustering

Solving model problem:

N	Geometric		Algebraic	
	Time (s)	Mem (MB)	Time (s)	Mem (MB)
253^{2}	0.9	51	1.3	47
358^{2}	1.9	86	2.9	94
511^{2}	4.5	212	6.5	198
729^{2}	9.6	371	15.0	402
1023^{2}	20.2	878	31.6	819
40^{3}	12.6	99	32.7	135
51^{3}	46.9	300	97.6	323
64^{3}	117.4	592	289.1	719
81^{3}	269.8	1410	804.3	1570
102^{3}	752.3	3020	1907.3	3370

Accuracy of \mathcal{H}-arithmetic chosen such that

$$
\left\|I-\left(L_{\mathcal{H}} U_{\mathcal{H}}\right)^{-1} A\right\|_{2} \leq 10^{-4}
$$

Numerical Experiments \quad Comparison with Direct Solvers

Solving

$$
-\Delta u+\lambda u=f \quad \text { in } \Omega=[0,1]^{2}
$$

Numerical Experiments \quad Comparison with Direct Solvers

Solving

$$
-\Delta u+\lambda u=f \quad \text { in } \Omega=[0,1]^{3}
$$

Numerical Experiments Parallel Performance

Parallel speedup for algebraic \mathcal{H}-LU factorisation in \mathbb{R}^{2} and \mathbb{R}^{3}.

Literature

國 L. Grasedyck, R. Kriemann and S. Le Borne,
Domain Decomposition Based \mathcal{H}-LU Preconditioning,
to appear in "Numerische Mathematik".
L. Grasedyck, R. Kriemann and S. Le Borne,

Parallel Black Box H-LU Preconditioning for Elliptic Boundary Value Problems,
"Computing and Visualization in Science", 11(4-6), pp. 273-291, 2008.
R. L. Grasedyck, W. Hackbusch and R. Kriemann,

Performance of $\mathcal{H}-L U$ Preconditioning for Sparse Matrices, to appear in "Computational Methods in Applied Mathematics".
國 \mathcal{H}-Lib ${ }^{\text {pro }}$
http://www.hlibpro.org

