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H-Matrices Model Problem

Uniformly elliptic 2nd order PDE

div α(x) ∇u(x) = f(x), x ∈ Ω

with Dirichlet/Neumann boundary conditions.

Galerkin discretisation

Ax = b, Aij = 〈∇ϕi, α∇ϕj〉L2(Ω)

with basis functions

ϕi : Ω→ R, i ∈ I = {1, . . . , N}

Goal: Solve the system fast and robust using LU factorisation
of A as preconditioner.

Problem: LU factors are usually prohibitively dense.

Solution: Compute approximate LU factorisation using
H-matrices with (almost) linear complexity.

Parallel Black Box H-LU Preconditioning 4/26



H-Matrices What are H-Matrices?

A matrix M ∈ Rn×m of rank ≤ k can
be represented as

M = UV T , U ∈ Rn×k, V ∈ Rm×k

I R(k)-matrix format

V

U

T

For a block-wise low-rank matrix M ∈ Rn×m

• each block is R(k)-matrix

• for small blocks: fullmatrix format

I H-matrix format with hierarchically block
organisation.

Needed: reordering (clustering) of index sets to
allow low-rank representation.
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H-Matrices Clustering

Domain

Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree

with admissibility condition

min(diam(t),diam(s)) ≤ η dist(t, s), η > 0
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H-Matrices Matrix Structure

• O (n) blocks

• Small red blocks:
full matrices

• All other blocks:
R(k)-matrices
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• block-wise:
exponential
decay of singular
values
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H-Matrices Arithmetic

Due to hierarchical block structure, standard recursive block
algorithms can be used, e.g. for multiplication:(

A11 A12

A21 A22

)
·
(

B11 B12

B21 B22

)
=

(
A11 ·B11 + A12 ·B21 A11 ·B12 + A12 ·B22

A21 ·B11 + A22 ·B21 A21 ·B12 + A22 ·B22

)

But, addition of low-rank matrices increases the rank and finally
produces full-rank matrices.

To limit complexity, a truncated addition is performed using SVD:

A1B
T
1 +A2B

T
2 =: CDT → USV T → C ′D′T

with (predefined) rank(C ′D′T ) < rank(CDT ) .

Complexity

truncation O (n) multiplication O
(
n log2 n

)
storage O (n log n) inversion O

(
n log2 n

)
matrix × vector O (n log n) triangular solve O

(
n log2 n

)
addition O (n log n) LU decomposition O

(
n log2 n

)
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H-Matrices Summary

To solve Ax = b using H-LU factorisation:

1 construct cluster tree using geometrical data,

2 construct block cluster tree using admissibility condition
(based on geometrical data),

3 build H-matrix representation of A,

4 perform H-LU factorisation (with approximation due to
truncated addition),

5 solve Ax = b preconditioned with H-LU approximated A−1.

But what to do if no geometry information is available?
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Algebraic Clustering
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Algebraic Clustering Motivation

Consider
−∆u = 0 in Ω = [0, 1]2

Using a uniform grid with step width h and standard piecewise
linear finite elements with nodal points xi, i ∈ I, one obtains the
stiffness matrix A ∈ RI×I as

Define the matrix graph G(A) = (VA, EA) of A as

VA := I, EA := {(i, j) : i 6= j ∧ aij 6= 0},

i.e. graph corresponds to sparsity pattern of stiffness matrix.
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Algebraic Clustering Motivation

Define distance distG(i, j) between nodes i, j ∈ I as length of
shortest path in G(A). Then, for i, j ∈ I we have:

‖xi − xj‖2 ≤ distG(i, j)h,

i.e. distance in R2 is mapped to distance in G(A):

i

jk
‖xi − xj‖2 =

√
13h, distG(i, j) = 5

‖xi − xk‖2 =
√

5h, distG(i, k) = 3

In model problem: since nodes in G(A) with small distance are also
geometrically neighboured, one can use graph distance to cluster
indices.
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Algebraic Clustering Clustering via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs
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Algebraic Clustering Clustering via General Graph Partitioning

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V,E) a partitioning P = {V1, V2},
with V1 ∩ V2 = ∅ and V = V1 ∪ V2, of V is sought, such
that

#V1 ∼ #V2 and

#{(i, j) ∈ E : i ∈ V1 ∧ j ∈ V2} = min . (edge-cut)

A small edge-cut corresponds to a low-rank coupling of matrix
blocks.

Although the graph partitioning problem is NP-hard good
approximation algorithms exist, e.g. multilevel or spectral methods.
Furthermore, they are available in open source packages, e.g.
METIS, Chaco or Scotch.
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Algebraic Admissibility
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Algebraic Admissibility Definition

To apply the standard admissibility condition

min(diam(t),diam(s)) ≤ η dist(t, s)

for a block cluster (t, s) ∈ V × V , one needs to define distance and
diameter of clusters in a graph.

• For V1, V2 ⊂ V , the distance between V1 and V2 is defined as

distG(V1, V2) := min
i∈V1,j∈V2

distG(i, j).

• The diameter of a sub graph induced by V ′ ⊆ V is defined as

diamG(V ′) := max
i,j∈V ′

distG(i, j).

Problem: diameter and distance in G costs O
(
n2

)
.
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Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster
surrounding ensuring admissibility.

For testing admissibility of block cluster (t, s) ∈ V × V

• choose i ∈ t and compute j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• build surrounding t̃ around t with 1
η d̃iam

layers,

• if t̃ ∩ s = ∅ then (t, s) is admissible.

t

s
s′

With usual FEM sparsity patterns, this procedure has complexity

O (#t) .
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Nested Dissection
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Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition
have to be separated by a (minimal) vertex separator.

Matrix graph:

Matrix:

Advantages of Nested Dissection

• zero blocks do not fill up during H-LU factorisation,

• blocks can be computed in parallel.
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Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of
the edge-cut between both node sets in a partition.

But for H-matrices the vertex separator has to be further
partitioned to form a cluster tree.

Problem: restricting G to nodes in vertex separator V might
remove important edges, e.g.

G|V

Solution: modify previous BFS based algorithm to perform
partitioning in a surrounding of the vertex separator.
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Numerical Experiments
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Numerical Experiments Comparison with Geom. Clustering

Solving model problem:

N Geometric Algebraic
Time (s) Mem (MB) Time (s) Mem (MB)

2532 0.9 51 1.3 47
3582 1.9 86 2.9 94
5112 4.5 212 6.5 198
7292 9.6 371 15.0 402

10232 20.2 878 31.6 819

403 12.6 99 32.7 135
513 46.9 300 97.6 323
643 117.4 592 289.1 719
813 269.8 1410 804.3 1570

1023 752.3 3020 1907.3 3370

Accuracy of H-arithmetic chosen such that

‖I − (LHUH)−1A‖2 ≤ 10−4
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Numerical Experiments Comparison with Direct Solvers

Solving
−∆u+ λu = f in Ω = [0, 1]2
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Numerical Experiments Parallel Performance

Parallel speedup for algebraic H-LU factorisation in R2 and R3.
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