Parallel Black Box H-LU Preconditioning

Ronald Kriemann MPI MIS Leipzig

Workshop "Complex Systems" METU

2009-05-14/15

1 H-Matrices

2 Algebraic Clustering

3 Algebraic Admissibility

4 Nested Dissection

5 Numerical Experiments

$\mathcal{H}\text{-}\mathbf{Matrices}$

Uniformly elliptic 2nd order PDE

$$\operatorname{div}\,\alpha(x)\,\nabla u(x)=f(x),\quad x\in\Omega$$

with Dirichlet/Neumann boundary conditions.

Galerkin discretisation

$$Ax = b,$$
 $A_{ij} = \langle \nabla \varphi_i, \alpha \nabla \varphi_j \rangle_{L^2(\Omega)}$

with basis functions

$$\varphi_i: \Omega \to \mathbb{R}, \qquad i \in I = \{1, \dots, N\}$$

Goal: Solve the system fast and robust using LU factorisation of A as preconditioner.

\mathcal{H} -Matrices What are \mathcal{H} -Matrices?

A matrix $M \in \mathbb{R}^{n \times m}$ of rank $\leq k$ can be represented as

$$M = UV^T, \quad U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}$$

R(k)-matrix format

\mathcal{H} -Matrices What are \mathcal{H} -Matrices?

A matrix $M \in \mathbbm{R}^{n \times m}$ of rank $\leq k$ can be represented as

$$M = UV^T, \quad U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}$$

R(k)-matrix format

For a block-wise low-rank matrix $M \in \mathbb{R}^{n \times m}$

- each block is R(k)-matrix
- for small blocks: fullmatrix format

► *H*-matrix format with hierarchically block organisation.

Needed: reordering (clustering) of index sets to allow low-rank representation.

Construct cluster tree using geometrical data:

Matrix

Construct cluster tree using geometrical data:

Matrix

Construct cluster tree using geometrical data:

Matrix

Construct cluster tree using geometrical data:

Matrix

Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree with admissibility condition

 $\min(\operatorname{diam}(t),\operatorname{diam}(s)) \leq \eta \operatorname{dist}(t,s), \quad \eta > 0$

Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree with admissibility condition

 $\min(\operatorname{diam}(t),\operatorname{diam}(s)) \leq \eta \operatorname{dist}(t,s), \quad \eta > 0$

H-Matrices Clustering

Domain

Construct cluster tree using geometrical data:

Matrix

Construct block cluster tree with admissibility condition

```
\min(\operatorname{diam}(t),\operatorname{diam}(s)) \leq \eta \operatorname{dist}(t,s), \quad \eta > 0
```


• $\mathcal{O}\left(n\right)$ blocks

- $\mathcal{O}\left(n
 ight)$ blocks
- Small red blocks: full matrices

- $\mathcal{O}\left(n
 ight)$ blocks
- Small red blocks: full matrices
- All other blocks: R(k)-matrices

 block-wise: exponential decay of singular values

H-Matrices Arithmetic

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

H-Matrices Arithmetic

٩

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

But, addition of low-rank matrices increases the rank and finally produces full-rank matrices.

To limit complexity, a truncated addition is performed using SVD:

 $A_1B_1^T + A_2B_2^T =: CD^T \quad \rightarrow \quad USV^T \quad \rightarrow \quad C'D'^T$

with (predefined) $\operatorname{rank}(C'D'^T) < \operatorname{rank}(CD^T)$.

H-Matrices Arithmetic

Ð

Due to hierarchical block structure, standard recursive block algorithms can be used, e.g. for multiplication:

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{pmatrix}$$

But, addition of low-rank matrices increases the rank and finally produces full-rank matrices.

To limit complexity, a truncated addition is performed using SVD:

$$\begin{split} A_1B_1^T + A_2B_2^T =: CD^T & \to \quad USV^T & \to \quad C'D'^T \\ \text{with (predefined) } \operatorname{rank}(C'D'^T) < \operatorname{rank}(CD^T) \ . \end{split}$$

Complexity

truncation $\mathcal{O}(n)$ storage $\mathcal{O}(n \log n)$ matrix × vector $\mathcal{O}(n \log n)$ addition $\mathcal{O}(n \log n)$

multiplication inversion triangular solve LU decomposition

$$\begin{array}{l} \mathcal{O}\left(n\log^2 n\right)\\ \mathcal{O}\left(n\log^2 n\right)\\ \mathcal{O}\left(n\log^2 n\right)\\ \mathcal{O}\left(n\log^2 n\right) \end{array}$$

To solve Ax = b using \mathcal{H} -LU factorisation:

- construct cluster tree using geometrical data,
- construct block cluster tree using admissibility condition (based on geometrical data),
- **3** build \mathcal{H} -matrix representation of A,
- perform *H*-LU factorisation (with approximation due to truncated addition),
- **5** solve Ax = b preconditioned with \mathcal{H} -LU approximated A^{-1} .

To solve Ax = b using \mathcal{H} -LU factorisation:

- construct cluster tree using geometrical data,
- construct block cluster tree using admissibility condition (based on geometrical data),
- **3** build \mathcal{H} -matrix representation of A,
- perform *H*-LU factorisation (with approximation due to truncated addition),
- **5** solve Ax = b preconditioned with \mathcal{H} -LU approximated A^{-1} .

But what to do if no geometry information is available?

Algebraic Clustering

Consider

$$-\Delta u = 0 \qquad \text{ in } \Omega = [0,1]^2$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_i, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Consider

$$-\Delta u = 0 \qquad \text{ in } \Omega = [0,1]^2$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_i, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Define the matrix graph $G(A) = (V_A, E_A)$ of A as

$$V_A := I, \quad E_A := \{(i,j) : i \neq j \land a_{ij} \neq 0\},\$$

i.e. graph corresponds to sparsity pattern of stiffness matrix.

Consider

$$-\Delta u = 0 \qquad \text{ in } \Omega = [0,1]^2$$

Using a uniform grid with step width h and standard piecewise linear finite elements with nodal points $x_i, i \in I$, one obtains the stiffness matrix $A \in \mathbb{R}^{I \times I}$ as

Define the matrix graph $G(A) = (V_A, E_A)$ of A as

$$V_A := I, \quad E_A := \{(i,j) : i \neq j \land a_{ij} \neq 0\},\$$

i.e. graph corresponds to sparsity pattern of stiffness matrix.

Define distance $\operatorname{dist}_G(i, j)$ between nodes $i, j \in I$ as length of shortest path in G(A). Then, for $i, j \in I$ we have:

 $||x_i - x_j||_2 \le \operatorname{dist}_G(i, j)h,$

i.e. distance in \mathbb{R}^2 is mapped to distance in G(A):

$$||x_i - x_j||_2 = \sqrt{13}h, \quad \text{dist}_G(i, j) = 5$$

 $||x_i - x_k||_2 = \sqrt{5}h, \quad \text{dist}_G(i, k) = 3$

Define distance $\operatorname{dist}_G(i, j)$ between nodes $i, j \in I$ as length of shortest path in G(A). Then, for $i, j \in I$ we have:

 $||x_i - x_j||_2 \le \operatorname{dist}_G(i, j)h,$

i.e. distance in \mathbb{R}^2 is mapped to distance in G(A):

$$||x_i - x_j||_2 = \sqrt{13}h, \quad \text{dist}_G(i, j) = 5$$

 $||x_i - x_k||_2 = \sqrt{5}h, \quad \text{dist}_G(i, k) = 3$

In model problem: since nodes in G(A) with small distance are also geometrically neighboured, one can use graph distance to cluster indices.

Algebraic Clustering Via Breadth First Search

٩

Algorithm:

1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters
- ecurse in sub graphs

Algebraic Clustering Clustering via General Graph Partitioning

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V, E) a partitioning $P = \{V_1, V_2\}$, with $V_1 \cap V_2 = \emptyset$ and $V = V_1 \cup V_2$, of V is sought, such that

$$\begin{split} \#V_1 &\sim \#V_2 & \text{and} \\ \#\{(i,j) \in E \ : \ i \in V_1 \land j \in V_2\} = \min. \quad \text{(edge-cut)} \end{split}$$

A small edge-cut corresponds to a low-rank coupling of matrix blocks.

Algebraic Clustering Clustering via General Graph Partitioning

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V, E) a partitioning $P = \{V_1, V_2\}$, with $V_1 \cap V_2 = \emptyset$ and $V = V_1 \cup V_2$, of V is sought, such that

$$\begin{split} \#V_1 &\sim \#V_2 \qquad \text{and} \\ \#\{(i,j) \in E \ : \ i \in V_1 \land j \in V_2\} = \min. \quad \text{(edge-cut)} \end{split}$$

A small edge-cut corresponds to a low-rank coupling of matrix blocks.

Although the graph partitioning problem is NP-hard good approximation algorithms exist, e.g. multilevel or spectral methods. Furthermore, they are available in open source packages, e.g. METIS, Chaco or Scotch.

Algebraic Admissibility

To apply the standard admissibility condition

 $\min(\operatorname{diam}(t),\operatorname{diam}(s)) \le \eta \operatorname{dist}(t,s)$

for a block cluster $(t,s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

To apply the standard admissibility condition

 $\min(\operatorname{diam}(t),\operatorname{diam}(s)) \le \eta \operatorname{dist}(t,s)$

for a block cluster $(t,s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

• For $V_1, V_2 \subset V$, the distance between V_1 and V_2 is defined as

$$\operatorname{dist}_G(V_1, V_2) := \min_{i \in V_1, j \in V_2} \operatorname{dist}_G(i, j).$$

• The diameter of a sub graph induced by $V^{\prime} \subseteq V$ is defined as

$$\operatorname{diam}_G(V') := \max_{i,j \in V'} \operatorname{dist}_G(i,j).$$

To apply the standard admissibility condition

 $\min(\operatorname{diam}(t),\operatorname{diam}(s)) \leq \eta \operatorname{dist}(t,s)$

for a block cluster $(t,s) \in V \times V$, one needs to define distance and diameter of clusters in a graph.

• For $V_1, V_2 \subset V$, the distance between V_1 and V_2 is defined as

$$\operatorname{dist}_G(V_1, V_2) := \min_{i \in V_1, j \in V_2} \operatorname{dist}_G(i, j).$$

• The diameter of a sub graph induced by $V' \subseteq V$ is defined as

$$\operatorname{diam}_G(V') := \max_{i,j \in V'} \operatorname{dist}_G(i,j).$$

Problem: diameter and distance in G costs $\mathcal{O}(n^2)$.

• choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_G(i,j) = \max$,

- diam_G(t) $\leq 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \overrightarrow{\text{diam}}$ layers,
- if $\tilde{t} \cap s = \emptyset$ then (t, s) is admissible.

Algebraic Admissibility | Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t,s) \in V \times V$

• choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_G(i, j) = \max_{i,j}$

- $\operatorname{diam}_G(t) < 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- build surrounding \tilde{t} around t with $\frac{1}{n}$ diam layers,
- if $\tilde{t} \cap s = \emptyset$ then (t, s) is admissible.

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t, s) \in V \times V$

• choose $i \in t$ and compute $j \in t$ with

- $\operatorname{dist}_G(i,j) = \max$,
- diam_G(t) $\leq 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\text{diam}}$ layers,
- if $\tilde{t} \cap s = \emptyset$ then (t, s) is admissible.

Algebraic Admissibility Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t,s) \in V \times V$

For testing admissibility of block cluster $(t, s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_G(i, j) = \max_{i,j}$
- $\operatorname{diam}_G(t) < 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- build surrounding \tilde{t} around t with $\frac{1}{n}$ diam layers,
- if $\tilde{t} \cap s = \emptyset$ then (t, s) is admissible.

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

Algebraic Admissibility | Testing

Solution: approximate cluster diameter and construct cluster surrounding ensuring admissibility.

For testing admissibility of block cluster $(t,s) \in V \times V$

- choose $i \in t$ and compute $j \in t$ with $\operatorname{dist}_G(i, j) = \max$,
- diam_G(t) $\leq 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- build surrounding \tilde{t} around t with $\frac{1}{\eta} \widetilde{\text{diam}}$ layers,
- if $\tilde{t} \cap s = \emptyset$ then (t, s) is admissible.

With usual FEM sparsity patterns, this procedure has complexity

 $\mathcal{O}\left(\#t\right)$.

Nested Dissection

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition have to be separated by a (minimal) vertex separator.

Advantages of Nested Dissection

- zero blocks do not fill up during $\mathcal{H}\text{-LU}$ factorisation,
- blocks can be computed in parallel.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H} -matrices the vertex separator has to be further partitioned to form a cluster tree.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H} -matrices the vertex separator has to be further partitioned to form a cluster tree.

Problem: restricting G to nodes in vertex separator \mathcal{V} might remove important edges, e.g.

Nested Dissection Cluster Tree for the Vertex Separator

A vertex separator can be obtained by computing a vertex cover of the edge-cut between both node sets in a partition.

But for \mathcal{H} -matrices the vertex separator has to be further partitioned to form a cluster tree.

Problem: restricting G to nodes in vertex separator \mathcal{V} might remove important edges, e.g.

Solution: modify previous BFS based algorithm to perform partitioning in a surrounding of the vertex separator.

Numerical Experiments

Solving model problem:

N	Geometric		Algebraic	
	Time (s)	Mem (MB)	Time (s)	Mem (MB)
253^{2}	0.9	51	1.3	47
358^{2}	1.9	86	2.9	94
511^{2}	4.5	212	6.5	198
729^{2}	9.6	371	15.0	402
1023^{2}	20.2	878	31.6	819
40^{3}	12.6	99	32.7	135
51^{3}	46.9	300	97.6	323
64^{3}	117.4	592	289.1	719
81^{3}	269.8	1410	804.3	1570
102^{3}	752.3	3020	1907.3	3370

Accuracy of $\mathcal H\mbox{-}arithmetic$ chosen such that

$$||I - (L_{\mathcal{H}}U_{\mathcal{H}})^{-1}A||_2 \le 10^{-4}$$

Numerical Experiments Comparison with Direct Solvers

Solving

$$-\Delta u + \lambda u = f$$
 in $\Omega = [0, 1]^2$

Numerical Experiments Comparison with Direct Solvers

Solving

$$-\Delta u + \lambda u = f$$
 in $\Omega = [0, 1]^3$

Numerical Experiments Parallel Performance

Parallel speedup for algebraic \mathcal{H} -LU factorisation in \mathbb{R}^2 and \mathbb{R}^3 .

Literature

- L. Grasedyck, R. Kriemann and S. Le Borne, Domain Decomposition Based H-LU Preconditioning, to appear in "Numerische Mathematik".
 - L. Grasedyck, R. Kriemann and S. Le Borne, Parallel Black Box H-LU Preconditioning for Elliptic Boundary Value Problems,

"Computing and Visualization in Science", 11(4-6), pp. 273–291, 2008.

L. Grasedyck, W. Hackbusch and R. Kriemann, *Performance of H-LU Preconditioning for Sparse Matrices*, to appear in "Computational Methods in Applied Mathematics".

 $\mathcal{H}\text{-Lib}^{\text{pro}}$

http://www.hlibpro.org

