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MS290: Part I
• “Combining Binary Compression with Low-Rank Arithmetic”, R.K.
• “A Fast Solver for Linear Systems with Tensor Product Structure via Low-Rank Updates”, Stefano Massei
• “Runtime System Considerations for Approximate Computing at Scale”, George Bosilca
• “Parallel QR Factorization of Block Low-Rank Matrices”, Muhammad Ridwan Apriansyah
• “Inexact Rational Krylov Methods for Large Matrix Equations”, Patrick Kürschner

MS324: Part II
• “Computational Efficiency through Tuned Approximation”, David E. Keyes
• “Portable Mixed Precision for the Iterative Solution of Sparse Linear Systems”, Enrique S. Quintana-Ortí
• “Mixed Precision Linear Algebra for High Fidelity Real-Time Wavefront Reconstruction on Giant Optical

Telescopes”, Damien Gratadour
• “Leveraging Half-Precision in Wireless Communication”, Adel Dabah
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Lowrank Techniques Minisymposium Approximate Computing

Approximation
Approximate dense data M ∈ Cn×m by U · V H with U ∈ Cn×k , V ∈ Cm×k

and k � n such that
||M − UV H || ≤ ε||M||,

with user defined ε > 0, via SVD, RRQR, RandSVD, ACA, Lanczos, . . ..

Blockwise Lowrank
As M normally does not have lowrank property ⇒ decompose into subblocks.

BLR/TLR

H

HODLR
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Number Representation Minisymposium Approximate Computing

IEEE 754

S-E-M1 Bits Unit Roundoff Performance2

FP80 1-15-64 80 2.7 × 10−20

FP64 1-11-52 64 1.1 × 10−16 34 TFlops
FP32 1-8-23 32 6.0 × 10−8 67 TFlops
TF32 1-8-10 19 4.9 × 10−4 494 TFlops
FP16 1-5-10 16 4.9 × 10−4 989 TFlops
BF16 1-8-7 16 3.9 × 10−3 989 TFlops
FP8 1-4-3 8 6.2 × 10−2 1979 TFlops

Huge potential for performance improvements if applicable.

1Sign - Exponent - Mantissa
2NVidia H100 datasheet (https://www.nvidia.com/en-us/data-center/h100/)
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Mixed Precision1

Factorization of block lowrank (BLR) matrices.
Precision of lowrank blocks chosen based on norm.

double single half

1Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, Keyes, Ltaief, Sun: “Accelerating Geostatistical Modeling and Prediction With Mixed-Precision
Computations: A High-Productivity Approach With PaRSEC”, IEEE Trans. on Par. and Distr. Systems, 2022
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Talk by George Bosilca



Number Representation Minisymposium Approximate Computing

Mixed Precision v21,2

Split UV H into

U · V H = [W1W2W3 . . .] · diag(σ1, . . . , σk) · [X1X2X3 . . .]H

with orthogonal Wi, Xi using precisions depending on the singular values σj .

double single half

1Ooi, Iwashita, Fukaya, Ida, Yokota.: “Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis”, Proceedings of
HPCAsia2020, 2020
2Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, Mary: “Mixed precision low-rank approximations and their application to block low-rank LU
factorization”, IMA J. of Num. Analysis, 2022
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Compressed Lowrank Storage
For a combustion application1, lowrank approximation was combined with (lossy)
floating point compression using ZFP2 to minimize data storage:
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A similar approach (without binary compression) was used to apply H-arithmetic
on the solution level in a PDE computation4.

1K., Ltaief, Luong, Pérez, Im, Keyes: “High-Performance Spatial Data Compression for Scientific Applications”, Euro-Par 2022
2Lindstrom: “Fixed-rate compressed floating-point arrays”, IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).

3Di, Cappello: “Fast Error-Bounded Lossy HPC Data Compression with SZ”, IEEE IPDPS. pp. 730–739 (2016)
4Massei, Robol, Kressner: “Hierarchical adaptive low-rank format with applications to discretized partial differential equations”. NLAwA (2022)
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Memory Accessor1 Compressed Lowrank Storage

Decouple compute precision
and

storage precision.

1Anzt, Flegar, Grützmacher, Quintana-Ortí: “Toward a modular precision ecosystem for high-performance computing”, Int. J. of HPC Applications, 33(6),
1069–1078, 2019.
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Talk by Enrique S. Quintana-Ortí (MS324)



Memory Accessor Compressed Lowrank Storage

Requirements for H-Matrices
• compress dense and lowrank data,
• adaptivity for lowrank approximation error,
• kernel-level conversion due to BLAS/LAPACK based arithmetic.

function truncation(in: U, V , ε, out: W , X )
Ud := decompress(U);
V d := decompress(V );
[QU , RU ] := qr( Ud );
[QV , RV ] := qr( V d );
[Us, Ss, Vs] := svd( RU · RH

V );
k := rank(Ss, ε);
W d := QU · Us(:, 1 : k) · Ss(1 : k, 1 : k);
Xd := QV · Vs(:, 1 : k);
W := compress(W d);
X := compress(Xd);
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Storage Options Compressed Lowrank Storage

Compression Libraries
For adaptivity only lossy compression of interest.

ZFP • very fast,
• for reliable error control only fixed bitrate used,
• limited compression rate.

SZ/SZ31 • good compression rates for general data,
• various error control options,
• various issues with mt-usage, compression rate and

performance.

MGARD2 • multi-grid technique plus lossless compression,
• various error control options,
• very slow.

1Zhao, Di, Dmitriev, Tonellot, Chen, Cappello: “Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation”,
IEEE 37th ICDE, 1643–1654 (2021)
2Ainsworth, Tugluk, Whitney, Klasky: “Multilevel techniques for compression and reduction of scientific data – the univariate case”. Comp.Vis.Sci. 19,
65–76 (2018)

R. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic« 11



Storage Options Compressed Lowrank Storage

Compression Libraries
For adaptivity only lossy compression of interest.

ZFP • very fast,
• for reliable error control only fixed bitrate used,
• limited compression rate.

SZ/SZ31 • good compression rates for general data,
• various error control options,
• various issues with mt-usage, compression rate and

performance.

MGARD2 • multi-grid technique plus lossless compression,
• various error control options,
• very slow.

1Zhao, Di, Dmitriev, Tonellot, Chen, Cappello: “Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation”,
IEEE 37th ICDE, 1643–1654 (2021)
2Ainsworth, Tugluk, Whitney, Klasky: “Multilevel techniques for compression and reduction of scientific data – the univariate case”. Comp.Vis.Sci. 19,
65–76 (2018)

R. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic« 11



Storage Options Compressed Lowrank Storage

IEEE 754

1 choose mantissa bits m based on
required accuracy,

2 choose exponent bits e based on
dynamic range.

S-E-M Unit Roundoff
FP64 1-11-52 1.1 × 10−16

FP32 1-8-23 6.0 × 10−8

TF32 1-8-10 4.9 × 10−4

BF16 1-8-7 3.9 × 10−3

FP16 1-5-10 4.9 × 10−4

FP8 1-4-3 6.2 × 10−2

1Dynamic range as log10
Vmax
Vmin

Rel. Memory

10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12

accuracy 
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IEEE 754
1 choose mantissa bits m based on

required accuracy,

2 choose exponent bits e based on
dynamic range.

S-E-M Unit Roundoff
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Storage Options Compressed Lowrank Storage

IEEE 754
1 choose mantissa bits m based on

required accuracy,

2 choose exponent bits e based on
dynamic range.

S-E-M Unit Roundoff Range1

FP64 1-11-52 1.1 × 10−16 631
FP32 1-8-23 6.0 × 10−8 83
TF32 1-8-10 4.9 × 10−4 79
BF16 1-8-7 3.9 × 10−3 78
FP16 1-5-10 4.9 × 10−4 12
FP8 1-4-3 6.2 × 10−2 5

1Dynamic range as log10
Vmax
Vmin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dyn. Range

Laplace SLP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dyn. Range

Matérn covariance
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Storage Options Compressed Lowrank Storage

IEEE 754
1 choose mantissa bits m based on

required accuracy,

2 choose exponent bits e based on
dynamic range.

S-E-M Unit Roundoff Range1

FP64 1-11-52 1.1 × 10−16 631
FP32 1-8-23 6.0 × 10−8 83
TF32 1-8-10 4.9 × 10−4 79
BF16 1-8-7 3.9 × 10−3 78
FP16 1-5-10 4.9 × 10−4 12
FP8 1-4-3 6.2 × 10−2 5

1Dynamic range as log10
Vmax
Vmin

1 2 3 4 5 6 7 8 9 10 11
#bits

FP64FP32FP16
Laplace SLP

1 2 3 4 5 6 7 8 9 10 11
#bits

FP64FP32FP16
Matérn covariance
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Storage Options Compressed Lowrank Storage

IEEE 754
1 choose mantissa bits m based on

required accuracy,
2 choose exponent bits e based on

dynamic range.

S-E-M Unit Roundoff Range1

FP64 1-11-52 1.1 × 10−16 631
FP32 1-8-23 6.0 × 10−8 83
TF32 1-8-10 4.9 × 10−4 79
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Storage Options Compressed Lowrank Storage

Adaptive Precision with IEEE 754

afloat: • fully adaptive choice of m and e,
• use 1-e-m to store data (with scaling and shifting),
• slow bit stream storage.

apfloat: • choose e and m as in afloat,
• increase m such that 1 + e + m is multiple of 8

bfloat: • 1-8-m format (1 + 8 + m multiple of 8)

dfloat: • 1-11-m format (1 + 11 + m multiple of 8)

R. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic« 13
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Results
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Setting Results

Machine
• 2x64-core AMD Epyc 7702 (Rome)
• 2x8 32GB DDR4-3200 DIMMs

Software
• HLR (libhlr.org)
• Intel TBB v2021.2
• Intel MKL v2022.0 (AVX2 code path)
• GCC 12

Benchmark
• Model problem: Laplace SLP on unit sphere, n = 524.288
• base is FP64 (computation and storage)
• standard H-arithmetic (no accumulator)
• lowrank truncation via SVD
• runtime: median out of 5 runs

R. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic« 15
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H-compression Results

Rel. Memory
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H-MatVec Results

Rel. Runtime
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H-LU factorisation Results

Rel. Runtime
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H-compression (Matérn covariance) Results

Rel. Memory
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Thank You
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H-compression Results

Error ||A − Ac||2/||A||2
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H-LU factorisation Results

Error ||I − A(LcUc)−1||2
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