Minisymposium

Approximate Computing for Scientific Applications

Minisymposium Approximate Computing

MS290: Part I

- "Combining Binary Compression with Low-Rank Arithmetic", R.K.
- "A Fast Solver for Linear Systems with Tensor Product Structure via Low-Rank Updates", Stefano Massei
- "Runtime System Considerations for Approximate Computing at Scale", George Bosilca
- "Parallel QR Factorization of Block Low-Rank Matrices", Muhammad Ridwan Apriansyah
- "Inexact Rational Krylov Methods for Large Matrix Equations", Patrick Kürschner

MS324: Part II

- "Computational Efficiency through Tuned Approximation", David E. Keyes
- "Portable Mixed Precision for the Iterative Solution of Sparse Linear Systems", Enrique S. Quintana-Ortí
- "Mixed Precision Linear Algebra for High Fidelity Real-Time Wavefront Reconstruction on Giant Optical Telescopes", Damien Gratadour
- "Leveraging Half-Precision in Wireless Communication", Adel Dabah

Approximation

Approximate dense data $M \in \mathbb{C}^{n \times m}$ by $U \cdot V^H$ with $U \in \mathbb{C}^{n \times k}$, $V \in \mathbb{C}^{m \times k}$ and $k \ll n$ such that

$$|M - UV^H|| \le \varepsilon ||M||,$$

with user defined $\varepsilon > 0$, via SVD, RRQR, RandSVD, ACA, Lanczos,

Approximation

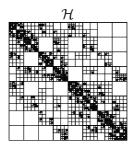
Approximate dense data $M \in \mathbb{C}^{n \times m}$ by $U \cdot V^H$ with $U \in \mathbb{C}^{n \times k}$, $V \in \mathbb{C}^{m \times k}$ and $k \ll n$ such that

$$|M - UV^H|| \le \varepsilon ||M||,$$

with user defined $\varepsilon > 0$, via SVD, RRQR, RandSVD, ACA, Lanczos,

Blockwise Lowrank

As *M* normally does not have lowrank property \Rightarrow decompose into subblocks.



Approximation

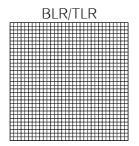
Approximate dense data $M \in \mathbb{C}^{n \times m}$ by $U \cdot V^H$ with $U \in \mathbb{C}^{n \times k}$, $V \in \mathbb{C}^{m \times k}$ and $k \ll n$ such that

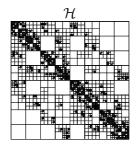
$$|M - UV^H|| \le \varepsilon ||M||,$$

with user defined $\varepsilon > 0$, via SVD, RRQR, RandSVD, ACA, Lanczos,

Blockwise Lowrank

As *M* normally does not have lowrank property \Rightarrow decompose into subblocks.





Approximation

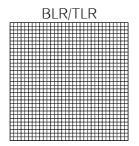
Approximate dense data $M \in \mathbb{C}^{n \times m}$ by $U \cdot V^H$ with $U \in \mathbb{C}^{n \times k}$, $V \in \mathbb{C}^{m \times k}$ and $k \ll n$ such that

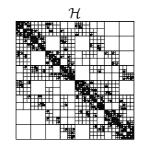
$$|M - UV^H|| \le \varepsilon ||M||,$$

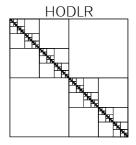
with user defined $\varepsilon > 0$, via SVD, RRQR, RandSVD, ACA, Lanczos,

Blockwise Lowrank

As *M* normally does not have lowrank property \Rightarrow decompose into subblocks.







Number Representation

IEEE 754

_	S-E-M ¹	Bits	Unit Roundoff	Performance ²
FP80	1-15-64	80	2.7×10^{-20}	
FP64	1- 11 - 52	64	1.1×10^{-16}	34 TFlops
FP32	1-8-23	32	6.0×10^{-8}	67 TFlops
TF32	1-8-10	19	4.9×10^{-4}	494 TFlops
FP16	1-5-10	16	$4.9 imes 10^{-4}$	989 TFlops
BF16	1-8-7	16	3.9×10^{-3}	989 TFlops
FP8	1-4-3	8	6.2×10^{-2}	1979 TFlops

Huge potential for performance improvements *if applicable*.

¹Sign - Exponent - Mantissa
²NVidia H100 datasheet (https://www.nvidia.com/en-us/data-center/h100/)

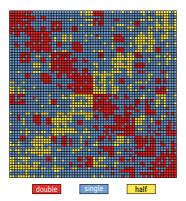
R. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic«

Number Representation

Mixed Precision¹

Factorization of block lowrank (BLR) matrices.

Precision of lowrank blocks chosen based on norm.



¹Abdulah, Cao, Pei, Bosilca, Dongarra, Genton, Keyes, Ltaief, Sun: "Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach With PaRSEC", IEEE Trans. on Par. and Distr. Systems, 2022

2. Kriemann, »Combining Binary Compression with Low-Rank Arithmetic«

Talk by George Bosilca

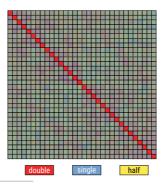
Number Representation

Mixed Precision v2^{1,2}

Split UV^H into

$$U \cdot V^{H} = [W_1 W_2 W_3 \dots] \cdot \operatorname{diag}(\sigma_1, \dots, \sigma_k) \cdot [X_1 X_2 X_3 \dots]^{H}$$

with orthogonal W_i , X_i using precisions depending on the singular values σ_j .



¹ Ooi, Iwashita, Fukaya, Ida, Yokota.: "Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis", Proceedings of HPCAsia2020, 2020

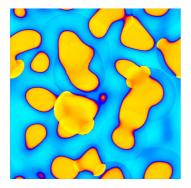
²Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, Mary: "Mixed precision low-rank approximations and their application to block low-rank LU

factorization", IMA J. of Num. Analysis, 2022

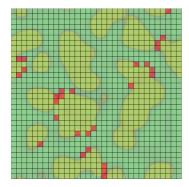
Combining Binary Compression with Low-Rank Arithmetic

Ronald Kriemann MPI MIS Leipzig

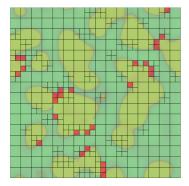
CSE23



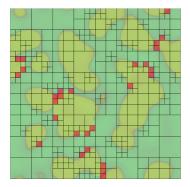
 ¹ K., Ltaief, Luong, Pérez, Im, Keyes: "High-Performance Spatial Data Compression for Scientific Applications", Euro-Par 2022
 ² Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).



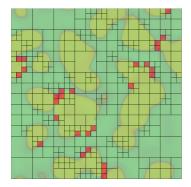
 ¹ K., Ltaief, Luong, Pérez, Im, Keyes: "High-Performance Spatial Data Compression for Scientific Applications", Euro-Par 2022
 ² Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).

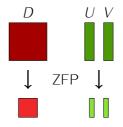


 ¹ K., Ltaief, Luong, Pérez, Im, Keyes: "High-Performance Spatial Data Compression for Scientific Applications", Euro-Par 2022
 ² Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).



 ¹ K., Ltaief, Luong, Pérez, Im, Keyes: **High-Performance Spatial Data Compression for Scientific Applications*^{*}, Euro-Par 2022
 ² Lindstrom: **Fixed-rate compressed floating-point arrays*^{*}, IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).
 ³ Di, Cappello: **Fast Error-Bounded Lossy HPC Data Compression with S2*^{*}, IEEE IPDPS. pp. 730–739 (2016)





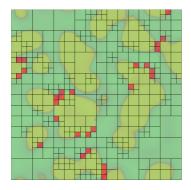
¹K., Ltaief, Luong, Pérez, Im, Keyes: **High-Performance Spatial Data Compression for Scientific Applications**, Euro-Par 2022

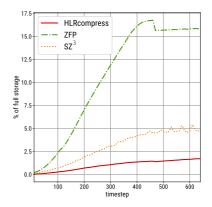
²Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).

³Di, Cappello: "Fast Error-Bounded Lossy HPC Data Compression with SZ", IEEE IPDPS. pp. 730–739 (2016)

⁴Massei, Robol, Kressner: "Hierarchical adaptive low-rank format with applications to discretized partial differential equations". NLAwA (2022)

For a combustion application¹, lowrank approximation was combined with (lossy) floating point compression using ZFP^2 to minimize data storage:





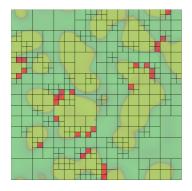
¹K., Ltaief, Luong, Pérez, Im, Keyes: "High-Performance Spatial Data Compression for Scientific Applications", Euro-Par 2022

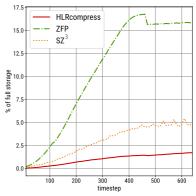
²Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).

³Di, Cappello: "Fast Error-Bounded Lossy HPC Data Compression with SZ", IEEE IPDPS. pp. 730–739 (2016)

⁴ Massei, Robol, Kressner: *Hierarchical adaptive low-rank format with applications to discretized partial differential equations*. NLAwA (2022)

For a combustion application¹, lowrank approximation was combined with (lossy) floating point compression using ZFP^2 to minimize data storage:





A similar approach (without binary compression) was used to apply \mathcal{H} -arithmetic on the solution level in a PDE computation⁴.

¹K., Ltaief, Luong, Pérez, Im, Keyes: "High-Performance Spatial Data Compression for Scientific Applications", Euro-Par 2022

²Lindstrom: "Fixed-rate compressed floating-point arrays", IEEE Trans. on Vis. and Comp. Graphics 20(12), 2674–2683 (2014).

³Di, Cappello: "Fast Error-Bounded Lossy HPC Data Compression with SZ", IEEE IPDPS. pp. 730–739 (2016)

⁴Massei, Robol, Kressner: "Hierarchical adaptive low-rank format with applications to discretized partial differential equations". NLAwA (2022)

Memory Accessor¹

Decouple compute precision and storage precision.

Talk by Enrique S. Quintana-Ortí (MS324)

¹Anzt, Flegar, Grützmacher, Quintana-Ortí: *Toward a modular precision ecosystem for high-performance computing*, Int. J. of HPC Applications, 33(6), 1069–1078, 2019.

Memory Accessor

Requirements for \mathcal{H} -Matrices

- compress dense and lowrank data,
- adaptivity for lowrank approximation error,
- *kernel-level* conversion due to BLAS/LAPACK based arithmetic.

```
function TRUNCATION(in: U, V, \varepsilon, out: W, X)

U^d := \text{decompress}(U);

V^d := \text{decompress}(V);

[Q_U, R_U] := \text{qr}(U^d);

[Q_V, R_V] := \text{qr}(V^d);

[U_s, S_s, V_s] := \text{svd}(R_U \cdot R_V^H);

k := \text{rank}(S_s, \varepsilon);

W^d := Q_U \cdot U_s(:, 1:k) \cdot S_s(1:k, 1:k);

X^d := Q_V \cdot V_s(:, 1:k);

W := \text{compress}(W^d);

X := \text{compress}(X^d);
```

Compression Libraries

For adaptivity only *lossy* compression of interest.

- ZFP very fast,
 - for reliable error control only fixed bitrate used,
 - limited compression rate.
- SZ/SZ3¹ good compression rates for general data,
 - various error control options,
 - *various issues* with mt-usage, compression rate and performance.

MGARD²

- multi-grid technique plus lossless compression,
- various error control options,
- very slow.

²Ainsworth, Tugluk, Whitney, Klasky: "Multilevel techniques for compression and reduction of scientific data – the univariate case". Comp.Vis.Sci. 19, 65–76 (2018)

¹Zhao, Di, Dmitriev, Tonellot, Chen, Cappello: "Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation", IEEE 37th ICDE, 1643–1654 (2021)

Compression Libraries

For adaptivity only *lossy* compression of interest.

- ZFP very fast,
 - for reliable error control only fixed bitrate used,
 - limited compression rate.

Z/SZ3¹ • good compression rates for general data,

- various error control options,
- *various issues* with mt-usage, compression rate and performance.

MGARD²

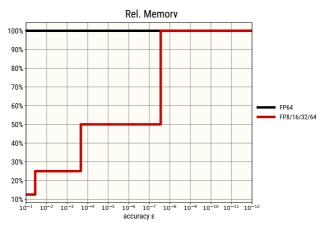
- multi-grid technique plus lossless compression,
- various error control options,
- very slow.

²Ainsworth, Tugluk, Whitney, Klasky: "Multilevel techniques for compression and reduction of scientific data – the univariate case". Comp.Vis.Sci. 19, 65–76 (2018)

¹Zhao, Di, Dmitriev, Tonellot, Chen, Cappello: "Optimizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation", IEEE 37th ICDE, 1643–1654 (2021)

IEEE 754

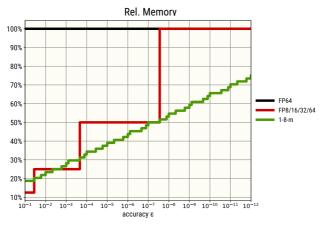
_	S-E-M	Unit Roundoff
FP64	1- 11 - 52	1.1×10^{-16}
FP32	1-8-23	$6.0 imes10^{-8}$
TF32	1-8-10	4.9×10^{-4}
BF16	1-8-7	$3.9 imes 10^{-3}$
FP16	1-5-10	$4.9 imes 10^{-4}$
FP8	1-4-3	$6.2 imes10^{-2}$



IEEE 754

 choose mantissa bits *m* based on required accuracy,

	S-E-M	Unit Roundoff
FP64	1- 11 - 52	$1.1 imes 10^{-16}$
FP32	1-8-23	$6.0 imes10^{-8}$
TF32	1-8-10	$4.9 imes 10^{-4}$
BF16	1-8-7	$3.9 imes10^{-3}$
FP16	1-5-10	$4.9 imes 10^{-4}$
FP8	1-4-3	$6.2 imes10^{-2}$



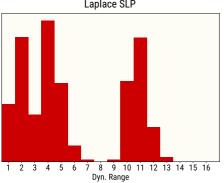
Storage Options

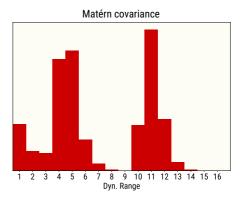
IEEE 754

choose mantissa bits *m* based on 1 required accuracy,

	S-E-M	Unit Roundoff	Range ¹
FP64	1- 11 - 52	1.1×10^{-16}	631
FP32	1-8-23	$6.0 imes10^{-8}$	83
TF32	<mark>1-8-10</mark>	$4.9 imes 10^{-4}$	79
BF16	1-8-7	$3.9 imes 10^{-3}$	78
FP16	<mark>1-5-10</mark>	$4.9 imes 10^{-4}$	12
FP8	1-4-3	$6.2 imes 10^{-2}$	5
		1 -	V V

¹Dynamic range as $\log_{10} \frac{V_{\text{max}}}{V_{\text{min}}}$





Laplace SLP

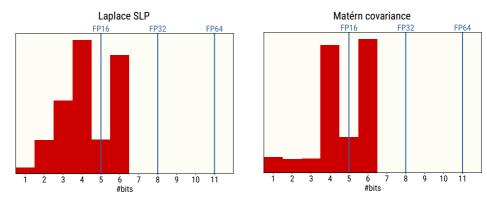
Storage Options

IEEE 754

 choose mantissa bits *m* based on required accuracy,

	S-E-M	Unit Roundoff	Range ¹
FP64	1- 11-52	1.1×10^{-16}	631
FP32	1-8-23	$6.0 imes10^{-8}$	83
TF32	1-8-10	$4.9 imes 10^{-4}$	79
BF16	1-8-7	$3.9 imes10^{-3}$	78
FP16	1- 5-10	$4.9 imes 10^{-4}$	12
FP8	1-4-3	$6.2 imes 10^{-2}$	5

¹Dynamic range as $\log_{10} rac{V_{\mathrm{max}}}{V_{\mathrm{min}}}$

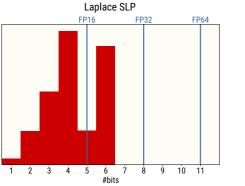


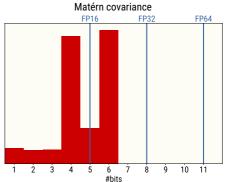
IEEE 754

- choose mantissa bits *m* based on required accuracy,
- 2 choose exponent bits e based on dynamic range.

	S-E-M	Unit Roundoff	Range ¹
FP64	1-11-52	1.1×10^{-16}	631
FP32	1-8-23	$6.0 imes10^{-8}$	83
TF32	1-8-10	$4.9 imes 10^{-4}$	79
BF16	1-8-7	$3.9 imes 10^{-3}$	78
FP16	<mark>1-5-10</mark>	$4.9 imes 10^{-4}$	12
FP8	1-4-3	$6.2 imes 10^{-2}$	5

¹Dynamic range as $\log_{10} \frac{V_{\text{max}}}{V_{\text{min}}}$





Adaptive Precision with IEEE 754

afloat:

- fully adaptive choice of *m* and *e*,
- use 1-e-m to store data (with scaling and shifting),
- *slow* bit stream storage.

1		

afloat:

Adaptive Precision with IEEE 754

• fully adaptive choice of *m* and *e*,

- use 1-e-m to store data (with scaling and shifting),
- *slow* bit stream storage.

apfloat:

- choose *e* and *m* as in *afloat*,
- increase m such that 1 + e + m is multiple of 8

afloat:

Adaptive Precision with IEEE 754

• fully adaptive choice of *m* and *e*,

- use 1-e-m to store data (with scaling and shifting),
- *slow* bit stream storage.

apfloat: • choose *e* and *m* as in *afloat*,

• increase *m* such that 1 + e + m is multiple of 8

bfloat: • 1-8-m format (1 + 8 + m multiple of 8)

dfloat: • 1-11-m format (1 + 11 + m multiple of 8)

Results

Setting

Machine

- 2x64-core AMD Epyc 7702 (Rome)
- 2x8 32GB DDR4-3200 DIMMs

Software

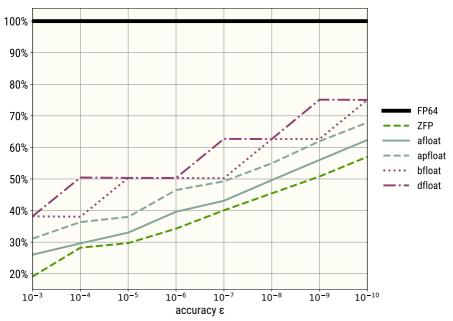
- HLR (libhlr.org)
- Intel TBB v2021.2
- Intel MKL v2022.0 (AVX2 code path)
- GCC 12

Benchmark

- Model problem: Laplace SLP on unit sphere, n = 524.288
- base is FP64 (computation and storage)
- standard \mathcal{H} -arithmetic (no accumulator)
- lowrank truncation via SVD
- runtime: median out of 5 runs

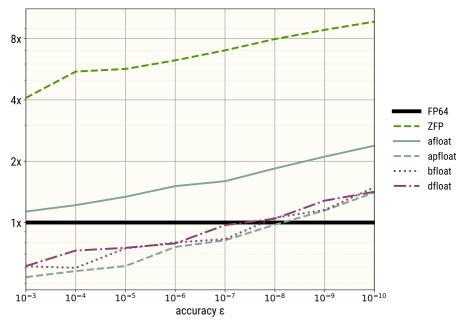
Results

\mathcal{H} -compression

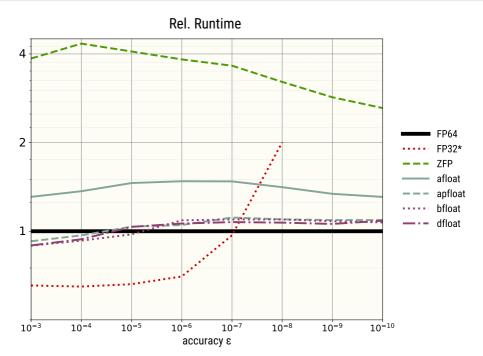


$\mathcal{H} ext{-MatVec}$

Rel. Runtime

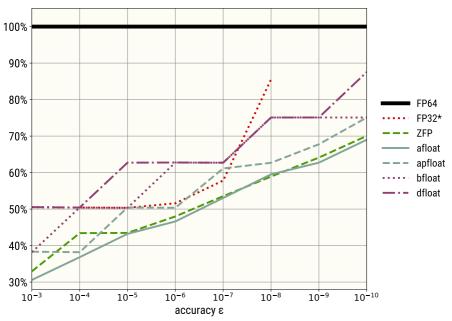


$\mathcal{H}\text{-}\mathsf{LU}$ factorisation

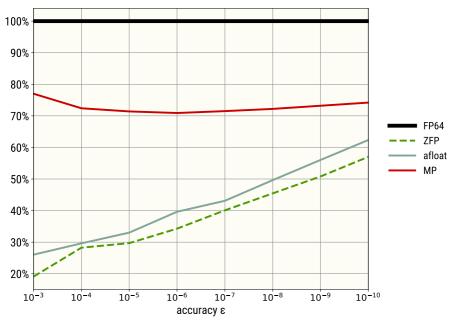


$\mathcal{H}\text{-}\mathsf{LU}$ factorisation

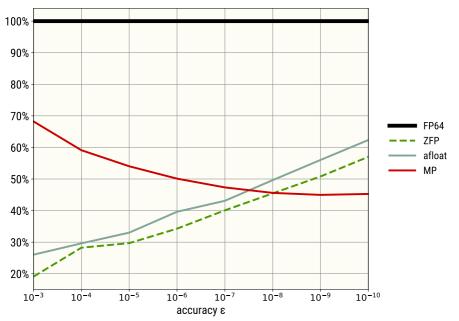
Results



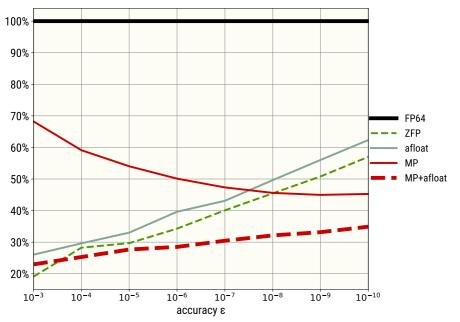
$\mathcal{H}\text{-compression}$



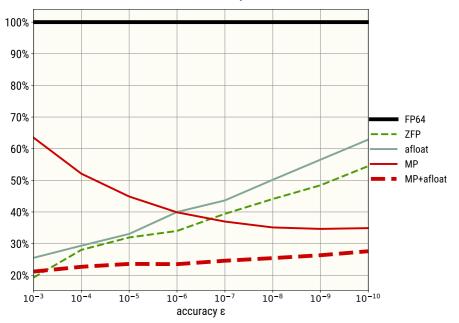
$\mathcal{H}\text{-compression}$



$\mathcal{H}\text{-compression}$



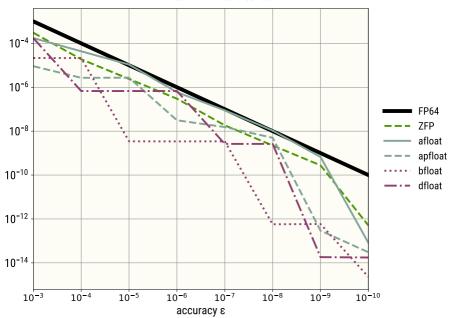
H-compression (Matérn covariance)



Thank You

 $\mathcal{H} ext{-compression}$

Error $||A - A^c||_2 / ||A||_2$



$\mathcal{H}\text{-}\mathsf{LU}$ factorisation

