H-Matrices and H-Arithmetic on
Many-Core Systems

Ronald Kriemann
MPI MIS

TC/PC? Kolloquium

Uni Paderborn

2018-09-10

Hierarchical Matrices

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any n x n matrix M exist orthogonal n x n matrices U, V and S = diag(so, ..., Sh—1)
such that M = USVT = Y " "s,U(:, i)V(.,). The s; are called singular values and
are descending: sp > s1 > ... > 5,1 > 0.

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any n x n matrix M exist orthogonal n x n matrices U, V and S = diag(so, ..., Sh—1)
such that M = USVT = Y " 's,U(:,))V(., i)T. The s; are called singular values and
are descending: sp > s1 > ... > 5,1 > 0.

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any n x n matrix M exist orthogonal n x n matrices U, V and S = diag(so, ..., Sh—1)
such that M = USVT = Y " 's,U(:,))V(., i)T. The s; are called singular values and
are descending: sp > s1 > ... > 5,1 > 0.

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any n x n matrix M exist orthogonal n x n matrices U, V and S = diag(so, ..., Sh—1)
such that M = USVT = Y " 's,U(:,))V(., i)T. The s; are called singular values and
are descending: sp > s1 > ... > 5,1 > 0.

Low-rank approximable n” x m’ subblocks M’ are represented in factorised form
M =~ A- BT, with n’ x k matrix A and m’ x k matrix B.

Hierarchical Matrices

Motivation

In H-matrices the rows and columns of a given dense n x n matrix M are
reordered to expose the (numerical) low-rank structure of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any n x n matrix M exist orthogonal n x n matrices U, V and S = diag(so, ..., Sh—1)
such that M = USVT = Y " 's,U(:,))V(., i)T. The s; are called singular values and
are descending: sp > s1 > ... > 5,1 > 0.

Low-rank approximable n” x m’ subblocks M’ are represented in factorised form
M =~ A- BT, with n’ x k matrix A and m’ x k matrix B.

Hierarchical Matrices

Clustering

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical partitioning for block index set
I'x1,1={0,....,n—1}

I
Geometry

Hierarchical Matrices

Clustering

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical partitioning for block index set
I'x1,1={0,...,n—1}

I
Geometry

Hierarchical Matrices

Clustering

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical partitioning for block index set
I'x1,1={0,..., n—1}

I
Geometry

Hierarchical Matrices

Clustering

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical partitioning for block index set
I'x1,1={0,..., n—1%

I
Geometry

e

Low-rank approximable blocks are identified with an admissibility condition:

max{diam(t), diam(s)} < ndist(t,s), n >0

Hierarchical Matrices

Clustering

(Recursive) Block Structure
The clustering (reordering) defines a hierarchical partitioning for block index set
I'x1,1={0,..., n—1}

I
Geometry

LN

e
- 4

Low-rank approximable blocks are identified with an admissibility condition:

max{diam(t), diam(s)} < ndist(t,s), n >0

Clustering

Hierarchical Matrices

Structure depends on Geometry

RRRR
RN

o
Kl
5%

%
o

KRR

IS SSSSES

S

S

RRA]
i

%

vaYA
XA
o

AVAV C
A
'A%“%%n
VAVaY raYaVay, vy
VaVavaa AYaVay, S 4Vay,
4 K\)
E

aTa%s

DO
DO0K

22
o

’
i
.

o

%
o

VAV AYAVaY
VoAV

20X

VaVavaaravay

TAAVAV, yeAYAVAY A AVs 0

VAV v AVaYay AvaY, W
POOAA

e
i o
14 21 21 me=|

compression = 98.78%

21

-

n = 124.928,

(Example: Helmholtz Integral Equation)

Hierarchical Matrices

Structure depends on Geometry

Clustering

%

29

e
L

7

QOB
R

%

compression = 98.75

n = 149.504,

(Example: Helmholtz Integral Equation)

Hierarchical Matrices

Clustering

Structure depends on Geometry

4‘:&
16 o1 4’:&12
n =175.616, compression = 99.09%

(Example: Helmholtz Integral Equation)

Hierarchical Matrices

Clustering

Structure depends on Geometry/Problem

i o 5
s 2
: s .
) Ses W
AR
S . £
: Ty 3 2 E
‘i > M TR g i SRR T
g 2 o 2 e
el B e
e Mice . o
gt 5 e :
LR %
H
Th s
i7 H«\ H»
. E 2 ==
- R ERmE
e e - o B S
H Pl o Fohred | Fh

n =75440,#RHS = 15.088, compression = 92.55%/93.39%

Hierarchical Matrices

Clustering

Structure depends on Geometry/Problem

==l He-

|20

24 e = il ;
g e
IR R
W, SN ‘
LT L B [
56 L L il 1

n =70.785, compression = 92.22%

(Example: Inverse of Sparse Matrix)

Hierarchical Matrices

Clustering

Sparse Matrices

For sparse matrices, if no geometry data is available, also graph partitioning
applied to the matrix graph can be used to compute the H-matrix partition.

Hierarchical Matrices

Clustering

Sparse Matrices

For sparse matrices, if no geometry data is available, also graph partitioning
applied to the matrix graph can be used to compute the H-matrix partition.

Combined with nested dissection, this yields efficient
partitionings for the H-LU of sparse matrices.

Hierarchical Matrices

Clustering

Sparse Matrices

For sparse matrices, if no geometry data is available, also graph partitioning
applied to the matrix graph can be used to compute the H-matrix partition.

Combined with nested dissection, this yields efficient L
partitionings for the H-LU of sparse matrices. anf 5

T

1

Hierarchical Matrices

Low-Rank Approximation

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

LOW_Ra nk ApprOXLmation Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

ui=M(0)—A-B(i:);
[Umax,] = max(abs(u));
vi=M(,:)=A(j.) B;
u = ulM(i, j);

A=A uj

B:=[B,V]

LOW_ Ra n |< Ap p rOXi,m ati'O n Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

u=M(_i—A-B(i,);
[Umax, /] = max(abs(u));
vi=M(,:)—Al.:) B

u = ulM(i, j);

A=A u]

B:=[B,V]

LOW_ Ra n |< Ap p rOXi,m ati'O n Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

u=M(_i—A-B(i,);
[Umax, /] = max(abs(u));
vi=M(,:)—Al.:) B

u = ulM(i, j);

A=A u]

B:=[B,V]

LOW_ Ra n |< Ap p rOXi,m atlo n Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

u=M(_i—A-B(i,);
[Umax, /] = max(abs(u));
vi=M(,:)—Al.:) B

u = ulM(i, j);

A=A u]

B:=[B,V]

LOW_ Ra n |< Ap p rOXi,m atlo n Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

u=M(_i—A-B(i,);
[Umax, /] = max(abs(u));
vi=M(,:)—Al.:) B

u = ulM(i, j);

A=A u]

B:=[B,V]

LOW_ Ra n |< Ap p rOXi,m atlo n Hierarchical Matrices

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
fori=0,..., k—1 do

u=M(_i—A-B(i,);
[Umax, /] = max(abs(u));
vi=M(,:)—Al.:) B

u = ulM(i, j);

A=A u]

B:=[B,V]

The resulting H-matrix has storage complexity of O (n log n).

Arlt h m etlc Hierarchical Matrices

Low-Rank Arithmetic

Low-rank matrices M € C"*™ are stored in factorized form
M=A-B"

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M,
and M, the sum

My + M, = A - Bl + A Bl =[A1, A By, Bo]”

has rank 2k.

Arlt h m etlc Hierarchical Matrices

Low-Rank Arithmetic

Low-rank matrices M € C"*™ are stored in factorized form
M=A-B"

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M,
and M, the sum

My + M, = A - Bl + A Bl =[A1, A By, Bo]”

has rank 2k.

In ‘H-arithmetic all sums of low-rank matrices are truncated back to rank k.
‘H-matrix arithmetic is not exact but approximative.

Instead of a fixed rank k, this can also be performed with a given precision € > O.

Arlt h m etlc Hierarchical Matrices

‘H-Arithmetic is based on recursive block algorithms and (truncated) low-rank
arithmetic.

For an H-Matrix A with a 2 x 2 block structure, e.g,

Ao Ao)
A=)
(Am A

we have the following algorithms for matrix multiplication and LU factorization:

procedure MuLTipLY(a, A, B, C)
if A, B, C are block matrices then
for i€ {0,1} do
for j€{0,1} do
for ¢ {0,1} do
Muttipry(a, Ay, Bie, Goj);

procedure LU(A, L, U)
if A is block matrix then
LU(Aoo, Loo, Uno);
SoLvELL(Aor, Loo, Ut);
SOLVEUR(A1(), ng, UO()),’
Muttipey(—1, Lyo, Uor, A);
else LU(A1, Lyq, Une);
C:=C+ aAB; else

A= LU,

All ‘H-matrix arithmetic functions have computational complexity of O (nlog® n).

. . ierarchical Matrices
‘H-Matrix Variants e

‘H?-Matrices

In H-matrices all low-rank blocks have individual
row/column bases.

H—MatrLX \/a rLa ntS Hierarchical Matrices

‘H?-Matrices

In H-matrices all low-rank blocks have individual /'\

row/column bases. ./'\. ./'\.

In ‘H2-matrices, a single row/column basis for all /\N /\ /\ /\
I I I D B B .

blocks with the same row/column cluster is used
instead. Furthermore, these row/column bases are
nested.

Hierarchical Matrices

H-Matrix Variants

‘H?-Matrices

In H-matrices all low-rank blocks have individual
row/column bases. u

A\

In ‘H2-matrices, a single row/column basis for all
blocks with the same row/column cluster is used
instead. Furthermore, these row/column bases are
nested.

N
I/
N
I/
i<
I/
i<
I/

With this, matrix coefficients in the H?-matrix are
stored with k x k matrices per low-rank block.

Storage complexity is reduced to O (n) and
computational complexity to O (n log n).

However, H?-arithmetic is more complicated.

Hierarchical Matrices

H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks
are on a single level.

Simplified arithmetic, e.qg., also on distributed systems,
but O (nz) storage and computational complexity.

Hierarchical Matrices

H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks
are on a single level. =

Simplified arithmetic, e.qg., also on distributed systems,
but O (nz) storage and computational complexity. -

A generalisation of BLR is Multi-Level BLR which
introduces a predefined number of hierarchy levels
independent on the problem dimension. m

e

Hierarchical Matrices

H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks o
are on a single level. g

HEE

Y

Simplified arithmetic, e.qg., also on distributed systems, o B
but O (nz) storage and computational complexity. il

A generalisation of BLR is Multi-Level BLR which L
introduces a predefined number of hierarchy levels
independent on the problem dimension.

R
I
i

G
i

Hierarchical Matrices

H-Matrix Variants

HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.

H-Matrix Variants

HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.

Hierarchical Matrices

Laplace SLP, n =512

H-Matrix Variants

HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.

Hierarchical Matrices

Laplace SLP, n = 2048

H—Matr[)(\/a rl_a ntS Hierarchical Matrices
HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices. o 153
Simplified arithmetic, but rank is dependent on n. S,
153 w | ” 271
w | 153
271 153 .

Laplace SLP, n = 8192

H—Matr[)(\/a rl_a ntS Hierarchical Matrices
HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices. o 153
Simplified arithmetic, but rank is dependent on n. S,
153 w | ” 271
w | 153
271 153 a
Laplace SLP, n = 8192

HSS
Same block layout as HODLR but based on H?-matrices.
Enables efficient H?-arithmetic but same rank problems as HODLR format.

Parallel H-Arithmetic

H a rdWa re Arch Ltectu re Parallel H-Arithmetic

Todays computing landscape consists of two implementations of a many core
architecture: CPUs with up to 32 (72) cores or GPUs with O (103) cores.

‘H-matrices on GPUs

General H-matrices and H-arithmetic have properties not best suited for GPUs:

® many different sized memory blocks (different rank,

block sizes), %%H:m H‘ i

® not a priort known data sizes (rank after truncation 2 ﬁ?m 2
unknown), o | ‘Hh*m

e updates to global data of different sizes, e.g., H-LU, b L if‘ﬁ

® more involved algorithms, e.g. SVD.

So, either ineffictent H-matrix properties (constant rank, equal block sizes, BLR
format) or inefficient GPU algorithms can be used.

In the following, we consider only (multiple) many-core CPUs.

Parallel H-Arithmetic

Programming Model

Classical H-matrix algorithms are formulated based on their block structure, which
leads to recursive algorithms.

procedure LU(A, L, U) procedure SolLvelL(A, L, B)

if A is block matrix then if A, L, B are block matrices then
LU(Ago, Loo, Uno); SOLVELL(Ao, Lo, Boo);
SOL\/ELL(Am , Lm, Um); SOL\/ELL(onw , Lo‘o, BOJ)}
SoLveUR(Aqo, L1o, Uno); Murtipy(—1, Lyo, Boo, A0);
Muttipry(—1, Lo, Upr, Ar); Muttipry(—1, Lyg, Bo1, Aiq);
LU(AM,LM,UM),' SOL\/ELL(A1VO,L1‘1,B1’0)}

else SoLVvELL(Avq, L1a, Bia);
A= LU else

LB = A

While making programming very simple, it is inefficient on many core CPUs due to
artificial synchronisations during runtime.

Only relies on matrix multiplication for efficient parallelization.

Parallel H-Arithmetic

Programming Model

Instead, these algorithms are used to identify the basic computational tasks and
their dependencies, which form a directed acyclic graph (DAQG).

The DAG is refined based on the block-wise dependencies.

procedure LU(A, L, U)
if A s a block matrix then

task(LU(Aoo, Loo, Lo));
§task(SOL\/ELL Aot Loo, Upr));
(SoLveUR(Aqo, Lo, Ugo));
==y
(

task
task(Muttipey(—1, Lyo, Upr, Arq));
task(LU(Aqq, Ln Ui)); [4
else ’1)
L-U=A

Parallel H-Arithmetic

Programming Model

Instead, these algorithms are used to identify the basic computational tasks and
their dependencies, which form a directed acyclic graph (DAQG).

The DAG is refined based on the block-wise dependencies.

procedure LU(A, L, U)
if A s a block matrix then

task(LU(A, Loo, Ugo)); P
§task(SOLVELL Aot Loo, Upt)); i

taSk(SOLVEUR A10 L10 UOO)) /
<task(MULT|PLY (=1, Lio, U, Avg));

task(LU A Ly, Upg)), /

else
L-U=A)
/
1>

Using this DAG for a task runtime system, H-arithmetic can efficiently be
scheduled to many core systems.

N

7=
=4

Z

/X

\Yi '4".“,3

i

Q;’aﬁg's"s“gﬁt

AN
I

=

— 7]

——

\ l 'M‘ "

i

N
\
A\l
\

Kriemann, ¥H-Matrices and H-Arithmetic on Many-Core Systems«

Parallel H-Arithmetic

Programming Model

The parallel degree of this DAG strongly depends on the structure of the H-matrix.

.
1N
.. -
Q==
\ e Eaea
W e\
-/ /mu// CAC R VCTE NN
=i, |\ e
‘-‘ | w7 N
‘M‘\ ‘ L = fq/nn-
I\ v A

Programming Model

Parallel H-Arithmetic

The parallel degree of this DAG strongly depends on the structure of the H-matrix.

Parallel H-Arithmetic

Programming Model

The parallel degree of this DAG strongly depends on the structure of the H-matrix.

Kriemann, yH-Matrices and H-Arithmetic on Many-Core Systems«

Parallel H-Arithmetic

H-LU Factorization
Numerical Results (n = 131.072)

Xeon 8176
Cores tinsec Speedup Reference
28 30.68 17.22 10.29
56 17.78 29.72 17.00
Epyc 7601
Cores tinsec Speedup Reference
32 37.01 28.27 25.74
64 24.91 42.01 43.27
KNL 7210
Cores tinsec Speedup Reference
64 86.09 36.8 24.02

(Reference: Dense LU factorization with Intel MKL)

Parallel H-Arithmetic

Compression

‘H-matrix construction can be performed
independently for all matrix blocks of the
‘H-matrix, e.g., trivially parallelizable.

for all blocks t x s do
if t x s is low-rank then
task(compute compression);
else
task(compute dense);

Furthermore, depending on the low-rank
approximation scheme, further vectorization
and parallelization is possible within a
matrix block.

. Parallel H-Arithmetic
Compression
‘H-matrix construction can be performed Numerical Results (n = 131.072)
independently for all matrix blocks of the Xeon 8176
‘H-matrix, e.g., trivially parallelizable. # Cores tinsec Speedup
28 47.45 18.88
for all blocks t x s do 56 24.29 36.89

if t x s is low-rank then 112 16.86 53.15

task(compute compression);
else Epyc 7601
task(compute dense); # Cores tinsec Speedup

32 17.86 31.43
64 9.28 60.48

Furthermore, depending on the low-rank 128 7.46 75.24
approximation scheme, further vectorization

and parallelization is possible within a KNL 7210

matrix block. # Cores tinsec Speedup

64 22.67 59.22
128 18.09 74.21

Parallel H-Arithmetic

Matrix-Vector Multiplication

For Mx = y per-block computations can
also be performed independently. Only the
update of y requires synchronisation.

for all blocks t x s of M do
if t X s is low-rank then
task(t := BTX|5; y' = At);
else
task(y" = M|ixsxs);

task(yls := yle + ¢");

To minimize this, the operations per CPU
core can be scheduled based on the row
indices.

Parallel H-Arithmetic

Matrix-Vector Multiplication

For Mx = y per-block computations can Numerical Results (n = 131.072)
also be performed independently. Only the Xeon 8176
update of y requires synchronisation. # Cores tinsec Speedup
for all blocks t x s of M do 28 4.9990-2 9.01
if t x s is low-rank then 56 4.8510-2 9.23
task(t ;= BT x|s;y’' = At);
else / Epyc 7601
task(y" = Mexsxlsi); # Cores tinsec Speedup
task(ylr == yle + y"); 32 69719-2 9.31
64 6.891p-2 9.41

To minimize this, the operations per CPU
core can be scheduled based on the row

. KNL 7210
indices.

Cores tinsec Speedup

64 29010-2 44.61
128 2.6510-2 48.77

KNC 5110
Cores tinsec Speedup

120 1.7210-2 11355

| iterature

El
El

B D D D W

W. Hackbusch,

A sparse matrix arithmetic based on H-matrices. |. Introduction to H-matrices,
Computing, 62(2), pp. 89-108, 1999

W. Hackbusch, B. Khoromskij, S. Sauter,

On ’Hz—mam‘ces,

Lecture Notes on Applied Mathematics, Springer, 2000.

M. Bebendorf,

Approximation of boundary element matrices,

Numerisch Mathematik, 86, pp. 565-589, 2000.

7. Sheng, P. Dewilde, S. Chandrasekaran,

Algorithms to solve Hierarchically Semi-separable Systems,

Operator Theory: Advances and Applications, 176, pp. 255-294, 2007
C. Weisbecker,

Improving multifrontal solvers by means of algebraic Block Low-Rank representations,
PhD thesis, 2013

S. Ambikasaran

Fast algorithms for dense numerical linear algebra and applications,
PhD thesis, 2013

R. Kriemann,

‘H-LU Factorization on Many-Core Systems,

Computing and Visualization in Science, 16, pp. 105-117, 2013

S. Borm, S. Christophersen,

Approximation of BEM matrices using GPGPUs,
CVS, accepted

Kriemann, vH.

Aatrices and H-Arithmetic on

fany-Core Systems«

Lib

hlibpro.com

23

	Appendix

