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Clustering

Hierarchical Matrices

Structure depends on Geometry
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Clustering

Structure depends on Geometry
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Clustering

Structure depends on Geometry/Problem
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Clustering

Structure depends on Geometry/Problem
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(Example: Inverse of Sparse Matrix)
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Clustering

Sparse Matrices

For sparse matrices, if no geometry data is available, also graph partitioning
applied to the matrix graph can be used to compute the H-matrix partition.
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Low-Rank Approximation

Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,
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mation, RROR, Rand-SVD, . ..
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Different algorithms are available for computing low-rank approximations for
dense matrix blocks, e.g,

SVD, interpolation, adaptive cross approximation, hybrid cross approxi-
mation, RROR, Rand-SVD, . ..

Adaptive Cross Approximation

procedure ACA(in: M, k, out: A, B)
A=[B:=[k:=0
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B:=[B,V]
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The resulting H-matrix has storage complexity of O (n log n).
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Low-Rank Arithmetic

Low-rank matrices M € C"*™ are stored in factorized form
M=A-B"

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M,
and M, the sum

My + M, = A - Bl + A Bl =[A1, A By, Bo]”

has rank 2k.
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Low-Rank Arithmetic

Low-rank matrices M € C"*™ are stored in factorized form
M=A-B"

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M,
and M, the sum

My + M, = A - Bl + A Bl =[A1, A By, Bo]”

has rank 2k.

In ‘H-arithmetic all sums of low-rank matrices are truncated back to rank k.
‘H-matrix arithmetic is not exact but approximative.

Instead of a fixed rank k, this can also be performed with a given precision € > O.
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‘H-Arithmetic is based on recursive block algorithms and (truncated) low-rank
arithmetic.

For an H-Matrix A with a 2 x 2 block structure, e.g,

Ao Ao )
A= )
(Am A

we have the following algorithms for matrix multiplication and LU factorization:

procedure MuLTipLY(a, A, B, C)
if A, B, C are block matrices then
for i€ {0,1} do
for j€{0,1} do
for ¢ {0,1} do
Muttipry( a, Ay, Bie, Goj );

procedure LU(A, L, U)
if A is block matrix then
LU( Aoo, Loo, Uno );
SoLvELL( Aor, Loo, Ut );
SOLVEUR( A1(), ng, UO() ),’
Muttipey( —1, Lyo, Uor, A );
else LU( A1, Lyq, Une );
C:=C+ aAB; else

A= LU,

All ‘H-matrix arithmetic functions have computational complexity of O (nlog® n).
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H-Matrix Variants

‘H?-Matrices

In H-matrices all low-rank blocks have individual
row/column bases. u

A\

In ‘H2-matrices, a single row/column basis for all
blocks with the same row/column cluster is used
instead. Furthermore, these row/column bases are
nested.

N
I/
N
I/
i<
I/
i<
I/

With this, matrix coefficients in the H?-matrix are
stored with k x k matrices per low-rank block.

Storage complexity is reduced to O (n) and
computational complexity to O (n log n).

However, H?-arithmetic is more complicated.
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H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks
are on a single level.

Simplified arithmetic, e.qg., also on distributed systems,
but O (nz) storage and computational complexity.




Hierarchical Matrices

H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks
are on a single level. =

Simplified arithmetic, e.qg., also on distributed systems,
but O (nz) storage and computational complexity. -

A generalisation of BLR is Multi-Level BLR which
introduces a predefined number of hierarchy levels
independent on the problem dimension. m

e




Hierarchical Matrices

H-Matrix Variants
Block Low-Rank (BLR)

No hierarchy is used, e.g, dense and low-rank blocks o
are on a single level. g

HEE

Y

Simplified arithmetic, e.qg., also on distributed systems, o B
but O (nz) storage and computational complexity. il

A generalisation of BLR is Multi-Level BLR which L
introduces a predefined number of hierarchy levels
independent on the problem dimension.

R
I
i

G
i




Hierarchical Matrices

H-Matrix Variants

HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.
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H-Matrix Variants

HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.

Hierarchical Matrices

Laplace SLP, n = 2048
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HODLR

In the HODLR format, all off-diagonal blocks are
handled as low-rank matrices. o 153
Simplified arithmetic, but rank is dependent on n. S,
153 w | ” 271
w | 153
271 153 a
Laplace SLP, n = 8192

HSS
Same block layout as HODLR but based on H?-matrices.
Enables efficient H?-arithmetic but same rank problems as HODLR format.
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H a rdWa re Arch Ltectu re Parallel H-Arithmetic

Todays computing landscape consists of two implementations of a many core
architecture: CPUs with up to 32 (72) cores or GPUs with O (103) cores.

‘H-matrices on GPUs

General H-matrices and H-arithmetic have properties not best suited for GPUs:

® many different sized memory blocks (different rank,

block sizes), %%H:m H‘ i

® not a priort known data sizes (rank after truncation 2 ﬁ?m 2
unknown), o | ‘Hh*m

e updates to global data of different sizes, e.g., H-LU, b L if‘ﬁ

® more involved algorithms, e.g. SVD.

So, either ineffictent H-matrix properties (constant rank, equal block sizes, BLR
format) or inefficient GPU algorithms can be used.

In the following, we consider only (multiple) many-core CPUs.



Parallel H-Arithmetic

Programming Model

Classical H-matrix algorithms are formulated based on their block structure, which
leads to recursive algorithms.

procedure LU(A, L, U) procedure SolLvelL(A, L, B)

if A is block matrix then if A, L, B are block matrices then
LU( Ago, Loo, Uno ); SOLVELL( Ao, Lo, Boo );
SOL\/ELL( Am , Lm, Um ); SOL\/ELL( onw , Lo‘o, BOJ )}
SoLveUR( Aqo, L1o, Uno ); Murtipy( —1, Lyo, Boo, A0 );
Muttipry( —1, Lo, Upr, Ar ); Muttipry( —1, Lyg, Bo1, Aiq );
LU( AM,LM,UM ),' SOL\/ELL( A1VO,L1‘1,B1’0 )}

else SoLVvELL( Avq, L1a, Bia );
A= LU else

LB = A

While making programming very simple, it is inefficient on many core CPUs due to
artificial synchronisations during runtime.

Only relies on matrix multiplication for efficient parallelization.



Parallel H-Arithmetic

Programming Model

Instead, these algorithms are used to identify the basic computational tasks and
their dependencies, which form a directed acyclic graph (DAQG).

The DAG is refined based on the block-wise dependencies.

procedure LU(A, L, U)
if A s a block matrix then

task(LU( Aoo, Loo, Lo ));
§task(SOL\/ELL Aot Loo, Upr ));
(SoLveUR( Aqo, Lo, Ugo ));
==y
(

task
task(Muttipey( —1, Lyo, Upr, Arq ));
task(LU( Aqq, Ln Ui )); [ 4
else ’1 )
L-U=A




Parallel H-Arithmetic

Programming Model

Instead, these algorithms are used to identify the basic computational tasks and
their dependencies, which form a directed acyclic graph (DAQG).

The DAG is refined based on the block-wise dependencies.

procedure LU(A, L, U)
if A s a block matrix then

task(LU( A, Loo, Ugo )); P
§task(SOLVELL Aot Loo, Upt )); i

taSk(SOLVEUR A10 L10 UOO )) /
<task(MULT|PLY (=1, Lio, U, Avg ));

task(LU A Ly, Upg )), /

else
L-U=A )
/
1>

Using this DAG for a task runtime system, H-arithmetic can efficiently be
scheduled to many core systems.
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Parallel H-Arithmetic

Programming Model

The parallel degree of this DAG strongly depends on the structure of the H-matrix.

.
1N
.. -
Q==
\ e Eaea
W e\
-/ /mu// CAC R VCTE NN
=i, |\ e
‘-‘ | w7 N
‘M‘\ ‘ L = fq/nn-
I\ v A




Programming Model

Parallel H-Arithmetic
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The parallel degree of this DAG strongly depends on the structure of the H-matrix.
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Parallel H-Arithmetic

H-LU Factorization
Numerical Results (n = 131.072)

Xeon 8176
# Cores tinsec Speedup Reference
28 30.68 17.22 10.29
56 17.78 29.72 17.00
Epyc 7601
# Cores tinsec Speedup Reference
32 37.01 28.27 25.74
64 24.91 42.01 43.27
KNL 7210
# Cores tinsec Speedup Reference
64 86.09 36.8 24.02

(Reference: Dense LU factorization with Intel MKL)



Parallel H-Arithmetic

Compression

‘H-matrix construction can be performed
independently for all matrix blocks of the
‘H-matrix, e.g., trivially parallelizable.

for all blocks t x s do
if t x s is low-rank then
task(compute compression);
else
task(compute dense);

Furthermore, depending on the low-rank
approximation scheme, further vectorization
and parallelization is possible within a
matrix block.



. Parallel H-Arithmetic
Compression
‘H-matrix construction can be performed Numerical Results (n = 131.072)
independently for all matrix blocks of the Xeon 8176
‘H-matrix, e.g., trivially parallelizable. # Cores tinsec Speedup
28 47.45 18.88
for all blocks t x s do 56 24.29 36.89

if t x s is low-rank then 112 16.86 53.15

task(compute compression);
else Epyc 7601
task(compute dense); # Cores tinsec Speedup

32 17.86 31.43
64 9.28 60.48

Furthermore, depending on the low-rank 128 7.46 75.24
approximation scheme, further vectorization

and parallelization is possible within a KNL 7210

matrix block. # Cores tinsec Speedup

64 22.67 59.22
128 18.09 74.21



Parallel H-Arithmetic

Matrix-Vector Multiplication

For Mx = y per-block computations can
also be performed independently. Only the
update of y requires synchronisation.

for all blocks t x s of M do
if t X s is low-rank then
task( t := BTX|5; y' = At);
else
task( y" = M|ixsxs);

task( yls := yle + ¢");

To minimize this, the operations per CPU
core can be scheduled based on the row
indices.




Parallel H-Arithmetic

Matrix-Vector Multiplication

For Mx = y per-block computations can Numerical Results (n = 131.072)
also be performed independently. Only the Xeon 8176
update of y requires synchronisation. # Cores tinsec Speedup
for all blocks t x s of M do 28 4.9990-2 9.01
if t x s is low-rank then 56 4.8510-2 9.23
task( t ;= BT x|s;y’' = At);
else / Epyc 7601
task( y" = Mexsxlsi); # Cores tinsec Speedup
task( ylr == yle + y"); 32 69719-2 9.31
64  6.891p-2 9.41

To minimize this, the operations per CPU
core can be scheduled based on the row

. KNL 7210
indices.

# Cores tinsec Speedup

64  29010-2 44.61
128 2.6510-2 48.77

KNC 5110
# Cores tinsec Speedup

120 1.7210-2 11355
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