${\cal H} ext{-Matrices}$ and ${\cal H} ext{-Arithmetic}$ on Many-Core Systems

Ronald Kriemann MPI MIS

TC/PC² Kolloquium

Uni Paderborn

2018-09-10

Hierarchical Matrices

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any $n \times n$ matrix M exist orthogonal $n \times n$ matrices U, V and $S = \text{diag}(s_0, \ldots, s_{n-1})$ such that $M = USV^T = \sum_{i=0}^{n-1} s_i U(:, i) V(:, i)^T$. The s_i are called *singular values* and are descending: $s_0 \ge s_1 \ge \ldots \ge s_{n-1} \ge 0$.

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any $n \times n$ matrix M exist orthogonal $n \times n$ matrices U, V and $S = \text{diag}(s_0, \dots, s_{n-1})$ such that $M = USV^T = \sum_{i=0}^{n-1} s_i U(:, i) V(:, i)^T$. The s_i are called *singular values* and are descending: $s_0 \ge s_1 \ge \dots \ge s_{n-1} \ge 0$.

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any $n \times n$ matrix M exist orthogonal $n \times n$ matrices U, V and $S = \text{diag}(s_0, \ldots, s_{n-1})$ such that $M = USV^T = \sum_{i=0}^{n-1} s_i U(:, i) V(:, i)^T$. The s_i are called *singular values* and are descending: $s_0 \ge s_1 \ge \ldots \ge s_{n-1} \ge 0$.

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any $n \times n$ matrix M exist orthogonal $n \times n$ matrices U, V and $S = \text{diag}(s_0, \dots, s_{n-1})$ such that $M = USV^T = \sum_{i=0}^{n-1} s_i U(:, i) V(:, i)^T$. The s_i are called *singular values* and are descending: $s_0 \ge s_1 \ge \dots \ge s_{n-1} \ge 0$.

Low-rank approximable $n' \times m'$ subblocks M' are represented in factorised form $M' \approx A \cdot B^T$, with $n' \times k$ matrix A and $m' \times k$ matrix B.

In \mathcal{H} -matrices the rows and columns of a given dense $n \times n$ matrix M are reordered to expose the (numerical) *low-rank structure* of subblocks of M.

(Example: Helmholtz Integral Equation)

Singular Value Decomposition (SVD)

For any $n \times n$ matrix M exist orthogonal $n \times n$ matrices U, V and $S = \text{diag}(s_0, \dots, s_{n-1})$ such that $M = USV^T = \sum_{i=0}^{n-1} s_i U(:, i) V(:, i)^T$. The s_i are called *singular values* and are descending: $s_0 \ge s_1 \ge \dots \ge s_{n-1} \ge 0$.

Low-rank approximable $n' \times m'$ subblocks M' are represented in factorised form $M' \approx A \cdot B^T$, with $n' \times k$ matrix A and $m' \times k$ matrix B.

(Recursive) Block Structure

The *clustering* (reordering) defines a *hierarchical* partitioning for block index set $l \times l$, $l = \{0, ..., n-1\}$.

(Recursive) Block Structure

The *clustering* (reordering) defines a *hierarchical* partitioning for block index set $l \times l$, $l = \{0, ..., n-1\}$.

(Recursive) Block Structure

The *clustering* (reordering) defines a *hierarchical* partitioning for block index set $l \times l$, $l = \{0, ..., n-1\}$.

(Recursive) Block Structure

The *clustering* (reordering) defines a *hierarchical* partitioning for block index set $l \times l$, $l = \{0, ..., n-1\}$.

Low-rank approximable blocks are identified with an *admissibility condition*:

$$\max\{\operatorname{diam}(t),\operatorname{diam}(s)\} \le \eta\operatorname{dist}(t,s), \quad \eta > 0$$

(Recursive) Block Structure

The *clustering* (reordering) defines a *hierarchical* partitioning for block index set $l \times l$, $l = \{0, ..., n-1\}$.

Low-rank approximable blocks are identified with an *admissibility condition*:

$$\max\{\operatorname{diam}(t),\operatorname{diam}(s)\} \le \eta\operatorname{dist}(t,s), \quad \eta > 0$$

Structure depends on Geometry

$$n = 124.928$$
,

n = 124.928, compression = 98.78%

Structure depends on Geometry

n = 149.504, compression = 98.75%

Structure depends on Geometry

$$n = 175.616,$$

$$n = 175.616$$
, compression = 99.09%

Structure depends on Geometry/Problem

$$n = 75.440, \#RHS = 15.088,$$
 compression = $92.55\%/93.39\%$

(Example: AO Tomography for E-ELT)

Structure depends on Geometry/Problem

n = 70.785, compression = 92.22%

(Example: Inverse of Sparse Matrix)

Sparse Matrices

For sparse matrices, if no geometry data is available, also *graph partitioning* applied to the matrix graph can be used to compute the \mathcal{H} -matrix partition.

Sparse Matrices

For sparse matrices, if no geometry data is available, also *graph partitioning* applied to the matrix graph can be used to compute the \mathcal{H} -matrix partition.

Combined with *nested dissection*, this yields efficient partitionings for the \mathcal{H} -LU of sparse matrices.

Sparse Matrices

For sparse matrices, if no geometry data is available, also *graph partitioning* applied to the matrix graph can be used to compute the \mathcal{H} -matrix partition.

Combined with *nested dissection*, this yields efficient partitionings for the \mathcal{H} -LU of sparse matrices.

Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{max}, j] = max(abs(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{\text{max}}, j] = \text{max}(\text{abs}(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{max}, j] = max(abs(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{\text{max}}, j] = \text{max}(\text{abs}(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{\text{max}}, j] = \max(\text{abs}(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


Different algorithms are available for computing low-rank approximations for dense matrix blocks, e.g.,

SVD, interpolation, adaptive cross approximation, hybrid cross approximation, RRQR, Rand-SVD, . . .

Adaptive Cross Approximation

```
procedure ACA(in: M, k, out: A, B)

A := []; B := []; k := 0

for i = 0, ..., k - 1 do

u := M(:, i) - A \cdot B(i, :)';

[u_{max}, j] = max(abs(u));

v := M(j, :) - A(j, :) \cdot B';

u := u/M(i, j);

A := [A, u];

B := [B, v'];
```


The resulting \mathcal{H} -matrix has storage complexity of $\mathcal{O}(n \log n)$.

Arithmetic

Low-Rank Arithmetic

Low-rank matrices $M \in \mathbb{C}^{n \times m}$ are stored in factorized form

$$M = A \cdot B^T$$

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M_1 and M_2 , the sum

$$M_1 + M_2 = A_1 \cdot B_1^T + A_2 \cdot B_2^T = [A_1, A_2] \cdot [B_1, B_2]^T$$

has rank 2k.

Arithmetic

Low-Rank Arithmetic

Low-rank matrices $M \in \mathbb{C}^{n \times m}$ are stored in factorized form

$$M = A \cdot B^T$$

Matrix multiplication with a low-rank matrix preserves the rank.

However, matrix addition will increase the rank, e.g., for two rank-k matrices M_1 and M_2 , the sum

$$M_1 + M_2 = A_1 \cdot B_1^T + A_2 \cdot B_2^T = [A_1, A_2] \cdot [B_1, B_2]^T$$

has rank 2k.

In \mathcal{H} -arithmetic all sums of low-rank matrices are *truncated* back to rank k.

 ${\cal H}$ -matrix arithmetic is not exact but approximative.

Instead of a fixed rank k, this can also be performed with a given precision $\varepsilon > 0$.

Arithmetic

 ${\cal H}$ -Arithmetic is based on *recursive* block algorithms and (truncated) *low-rank* arithmetic.

For an \mathcal{H} -Matrix A with a 2 \times 2 block structure, e.g.,

$$A = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix},$$

we have the following algorithms for matrix multiplication and LU factorization:

```
procedure Multiply(\alpha, A, B, C)

if A, B, C are block matrices then

for i \in \{0,1\} do

for j \in \{0,1\} do

for \ell \in \{0,1\} do

Multiply(\alpha, A_{ij}, B_{i\ell}, C_{\ell j});

else
C := C + \alpha A B;
```

```
procedure LU(A, L, U)

if A is block matrix then

LU(A_{00}, L_{00}, U_{00});

SOLVELL(A_{01}, L_{00}, U_{01});

SOLVEUR(A_{10}, L_{10}, U_{00});

MULTIPLY(-1, L_{10}, U_{01}, A_{11});

LU(A_{11}, L_{11}, U_{11});

else

A = LU;
```

All \mathcal{H} -matrix arithmetic functions have computational complexity of $\mathcal{O}(n \log^{\alpha} n)$.

\mathcal{H}^2 -Matrices

In $\mathcal{H}\text{-matrices}$ all low-rank blocks have individual row/column bases.

\mathcal{H}^2 -Matrices

In \mathcal{H} -matrices all low-rank blocks have individual row/column bases.

In \mathcal{H}^2 -matrices, a single row/column basis for all blocks with the same row/column cluster is used instead. Furthermore, these row/column bases are nested.

\mathcal{H}^2 -Matrices

In \mathcal{H} -matrices all low-rank blocks have individual row/column bases.

In \mathcal{H}^2 -matrices, a single row/column basis for all blocks with the same row/column cluster is used instead. Furthermore, these row/column bases are nested.

With this, matrix coefficients in the \mathcal{H}^2 -matrix are stored with $k \times k$ matrices per low-rank block.

Storage complexity is reduced to $\mathcal{O}(n)$ and computational complexity to $\mathcal{O}(n \log n)$.

However, \mathcal{H}^2 -arithmetic is more complicated.

Block Low-Rank (BLR)

No hierarchy is used, e.g., dense and low-rank blocks are on a single level.

Simplified arithmetic, e.g., also on distributed systems, but $\mathcal{O}\left(n^2\right)$ storage and computational complexity.

Block Low-Rank (BLR)

No hierarchy is used, e.g., dense and low-rank blocks are on a single level.

Simplified arithmetic, e.g., also on distributed systems, but $\mathcal{O}\left(n^2\right)$ storage and computational complexity.

A generalisation of BLR is *Multi-Level BLR* which introduces a predefined number of hierarchy levels independent on the problem dimension.

Block Low-Rank (BLR)

No hierarchy is used, e.g., dense and low-rank blocks are on a single level.

Simplified arithmetic, e.g., also on distributed systems, but $\mathcal{O}\left(n^2\right)$ storage and computational complexity.

A generalisation of BLR is *Multi-Level BLR* which introduces a predefined number of hierarchy levels independent on the problem dimension.

HODLR

In the HODLR format, all off-diagonal blocks are handled as low-rank matrices.

HODLR

In the HODLR format, all off-diagonal blocks are handled as low-rank matrices.

Laplace SLP, n = 512

HODLR

In the HODLR format, all off-diagonal blocks are handled as low-rank matrices.

Laplace SLP, n = 2048

HODLR

In the HODLR format, all off-diagonal blocks are handled as low-rank matrices.

Laplace SLP, n = 8192

HODLR

In the HODLR format, all off-diagonal blocks are handled as low-rank matrices.

Simplified arithmetic, but rank is dependent on n.

Laplace SLP, n = 8192

HSS

Same block layout as HODLR but based on \mathcal{H}^2 -matrices.

Enables efficient \mathcal{H}^2 -arithmetic but same rank problems as HODLR format.

Parallel \mathcal{H} -Arithmetic

Hardware Architecture

Todays computing landscape consists of two implementations of a *many core* architecture: CPUs with up to 32 (72) cores or GPUs with $\mathcal{O}\left(10^3\right)$ cores.

\mathcal{H} -matrices on GPUs

General \mathcal{H} -matrices and \mathcal{H} -arithmetic have properties not best suited for GPUs:

- many different sized memory blocks (different rank, block sizes),
- not a priori known data sizes (rank after truncation unknown),
- ullet updates to global data of different sizes, e.g., ${\cal H} ext{-LU}$,
- more involved algorithms, e.g. SVD.

So, either inefficient \mathcal{H} -matrix properties (constant rank, equal block sizes, BLR format) or inefficient GPU algorithms can be used.

In the following, we consider only (multiple) many-core CPUs.

Classical \mathcal{H} -matrix algorithms are formulated based on their block structure, which leads to recursive algorithms.

```
procedure LU(A, L, U)

if A is block matrix then

LU(A_{00}, L_{00}, U_{00});

SOLVELL(A_{01}, L_{00}, U_{01});

SOLVEUR(A_{10}, L_{10}, U_{00});

MULTIPLY(-1, L_{10}, U_{01}, A_{11});

LU(A_{11}, L_{11}, U_{11});

else

A = LU;
```

```
procedure Solvell(A, L, B)

if A, L, B are block matrices then

Solvell(A_{0,0}, L_{0,0}, B_{0,0});

Solvell(A_{0,1}, L_{0,0}, B_{0,1});

Multiply(-1, L_{1,0}, B_{0,0}, A_{1,0});

Multiply(-1, L_{1,0}, B_{0,1}, A_{1,1});

Solvell(A_{1,0}, L_{1,1}, B_{1,0});

Solvell(A_{1,1}, L_{1,1}, B_{1,1});

else

LB = A;
```

While making programming very simple, it is inefficient on many core CPUs due to artificial *synchronisations* during runtime.

Only relies on matrix multiplication for efficient parallelization.

Instead, these algorithms are used to identify the basic computational *tasks* and their *dependencies*, which form a *directed acyclic graph* (DAG).

The DAG is *refined* based on the block-wise dependencies.

```
procedure LU(A, L, U)

if A is a block matrix then

task(LU(A_{00}, L_{00}, U_{00}));

task(SOLVELL(A_{01}, L_{00}, U_{01}));

task(SOLVEUR(A_{10}, L_{10}, U_{00}));

task(MULTIPLY(-1, L_{10}, U_{01}, A_{11}));

else

L \cdot U = A;
```


Instead, these algorithms are used to identify the basic computational *tasks* and their *dependencies*, which form a *directed acyclic graph* (DAG).

The DAG is *refined* based on the block-wise dependencies.

```
procedure LU(A, L, U)

if A is a block matrix then

task(LU(A_{00}, L_{00}, U_{00}));

task(SolveLL(A_{01}, L_{00}, U_{01}));

task(SolveUR(A_{10}, L_{10}, U_{00}));

task(MULTIPLY(-1, L_{10}, U_{01}, A_{11}));

else

L \cdot U = A;
```


Using this DAG for a task runtime system, \mathcal{H} -arithmetic can efficiently be scheduled to many core systems.

The parallel degree of this DAG strongly depends on the structure of the ${\cal H} ext{-matrix}.$

The parallel degree of this DAG strongly depends on the structure of the ${\cal H}\text{-matrix}.$

The parallel degree of this DAG strongly depends on the structure of the $\mathcal{H}\text{-matrix}.$

\mathcal{H} -LU Factorization

Numerical Results (n = 131.072)

Xeon 8176				
# Cores	t in sec	Speedup	Reference	
28	30.68	17.22	10.29	
56	17.78	29.72	17.00	

Epyc /601			
# Cores	t in sec	Speedup	Reference
32 64	37.01 24.91	28.27 42.01	25.74 43.27

KNL 7210				
# Cores	t in sec	Speedup	Reference	
64	86.09	36.8	24.02	

(Reference: Dense LU factorization with Intel MKL)

Compression

 ${\cal H}$ -matrix construction can be performed independently for all matrix blocks of the ${\cal H}$ -matrix, e.g., trivially parallelizable.

```
for all blocks t \times s do

if t \times s is low-rank then

task(compute compression);

else

task(compute dense);
```

Furthermore, depending on the low-rank approximation scheme, further vectorization and parallelization is possible *within* a matrix block.

Compression

 \mathcal{H} -matrix construction can be performed independently for all matrix blocks of the \mathcal{H} -matrix, e.g., trivially parallelizable.

```
for all blocks t \times s do

if t \times s is low-rank then

task(compute compression);

else

task(compute dense);
```

Furthermore, depending on the low-rank approximation scheme, further vectorization and parallelization is possible *within* a matrix block.

Numerical Results (n = 131.072)

Xeon 8176				
# Cores	t in sec	Speedup		
28	47.45	18.88		
56	24.29	36.89		
112	16.86	53.15		

Ерус 7601				
# Cores	t in sec	Speedup		
32	17.86	31.43		
64	9.28	60.48		
128	7.46	75.24		

KNL 7210				
	# Cores	t in sec	Speedup	
	64	22.67	59.22	
	128	18.09	74.21	

Matrix-Vector Multiplication

For Mx = y per-block computations can also be performed independently. Only the update of y requires synchronisation.

```
for all blocks t \times s of M do

if t \times s is low-rank then

task( t := B^T x|_s; y' = At;);

else

task( y' = M|_{t \times s} x|_s;);

task( y|_t := y|_t + y';);
```

To minimize this, the operations per CPU core can be scheduled based on the row indices.

Matrix-Vector Multiplication

For Mx = y per-block computations can also be performed independently. Only the update of y requires synchronisation.

```
for all blocks t \times s of M do

if t \times s is low-rank then

task( t := B^T x|_s; y' = At;);

else

task( y' = M|_{t \times s} x|_s;);

task( y|_t := y|_t + y';);
```

To minimize this, the operations per CPU core can be scheduled based on the row indices.

Numerical Results (n = 131.072)

Xeon 8176				
# Cores	t in sec	Speedup		
28 56		9.01 9.23		

# Cores	Epyc 7601 <i>t</i> in sec	Speedup
32 64		9.31 9.41

KNL 7210				
# Cores	t in sec	Speedup		
64	2.90 ₁₀ -2	44.61		
128	2.65 ₁₀ -2	48.77		

# Cores	t in sec	Speedup
120	1.72 ₁₀ -2	113.55

KNC 5110

Literature

W. Hackbusch,

M. Bebendorf,

A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices, Computing, 62(2), pp. 89–108, 1999.

W. Hackbusch, B. Khoromskij, S. Sauter,

On \mathcal{H}^2 -matrices.

Lecture Notes on Applied Mathematics, Springer, 2000

Approximation of boundary element matrices,

Numerisch Mathematik, 86, pp. 565–589, 2000

Z. Sheng, P. Dewilde, S. Chandrasekaran,

Algorithms to solve Hierarchically Semi-separable Systems, Operator Theory: Advances and Applications, 176, pp. 255–294, 2007.

C. Weisbecker,

Improving multifrontal solvers by means of algebraic Block Low-Rank representations, PhD thesis, 2013.

S. Ambikasaran

Fast algorithms for dense numerical linear algebra and applications, *PhD thesis*, 2013.

R. Kriemann

H-LU Factorization on Many-Core Systems, Computing and Visualization in Science, 16, pp. 105–117, 2013.

S. Börm, S. Christophersen,

Approximation of BEM matrices using GPGPUs, CVS, accepted.

hlibpro.com