
C++ for Scientific Computing

Ronald Kriemann
MPI MIS Leipzig

2012-10-01

R. Kriemann, »C++ for Scientific Computing« 1/316

1. Introduction
2. Variables and Datatypes

3. Arithmetic Operators

4. Type Casting

5. Blocks and Scope

6. Control Structures
7. Functions
8. Arrays and Dynamic Memory

9. Advanced Datatypes

10. Modules and Namespaces

11. Classes

12. Generic Programming

13. Error Handling

14. Standard Template Library

15. Class Inheritance

16. Appendix

Introduction

R. Kriemann, »C++ for Scientific Computing« 3/316

Why C++?

Why not Matlab?
• Matlab is a high level language, e.g. provides many

functions/algorithms allowing rapid developement.
• But Matlab is limited to dense and (to some degree) sparse

matrices, therefore not flexible enough, especially for large
problems.

Why not Fortran?
• Fortran is one of the main programming language in many

areas including numerics.
• Many excellent software libraries are written in Fortran, e.g.

LAPACK.
• Fortran 77 quite dated in terms of language features.
• Recent updates of Fortran (90, 95, 2000) modernised the

language, but still somewhat dated.

R. Kriemann, »C++ for Scientific Computing« 4/316

Why C++?

So, Why C++ (and not C) ?
• C is a subset of C++.
• C++ provides many features which make programming easier.
• C++ can be as fast as C (and sometimes faster).
• C++ (like C) can use all software libraries written in Fortran or

C.
• Many new software libraries are written in C++.

Why not C++?
• C++ can be complicated as opposed to C.
• If you do not follow strict programming rules, you can make

many errors (unlike Matlab, or Fortran).

R. Kriemann, »C++ for Scientific Computing« 5/316

Hello World

Like every programming course, we start with something simple:
#include <iostream>

using namespace std;

int
main (int argc, char ** argv)
{

// print welcome message
cout << "Hello World" << endl;
return 0;

}

Even this small example contains:
• modules and namespaces,
• functions and blocks and
• variables and datatypes

Remark
Comments in C++ begin with a “//” and span the rest of
the line.

R. Kriemann, »C++ for Scientific Computing« 6/316

Hello World

C++ is a compiler based language, i.e. one has to translate the
source code of the program into a machine executable format using
another program, called the compiler.
Source code files, or just source files, typically have a filename suffix
like “.cc”, “.C” or “.cpp”.
There are many different C++ compilers available even for one
operating system. On Linux, the GNU Compiler Collection provides
the g++ compiler. Alternatively, Intel offers another compiler named
icpc.
As an example, to compile the source file hello.cc for “Hello
World” into an executable binary using the GCC compiler, you’ll
have to enter

g++ -o hello hello.cc

and afterwards run the program via “./hello”.

R. Kriemann, »C++ for Scientific Computing« 7/316

Variables and Datatypes

R. Kriemann, »C++ for Scientific Computing« 8/316

Variables and Datatypes

In C++, all variables have to be of some specific datatype, which is,
once defined, fixed and can not be changed, e.g. unlike in Matlab.

Integer Datatypes
characters :

• char: ’c’, ’/’, ’\n’, ’\\’, ’π’ (with Unicode)
• also numbers: from −27 . . . 27 − 1, e.g. 0, −128, 127

signed integers :
• short: from −215 . . . 215 − 1, e.g. 0, −32768, 1000
• int: from −231 . . . 231 − 1, e.g. 0, −100, 2147483647
• long: from −231 . . . 231 − 1, or −263 . . . 263 − 1

unsigned integers :
• unsigned short: from 0 . . . 216 − 1
• unsigned int or unsigned: from 0 . . . 232 − 1
• unsigned long: from 0 . . . 232 − 1, or 0 . . . 264 − 1

R. Kriemann, »C++ for Scientific Computing« 9/316

Variables and Datatypes

Integer Datatypes: Overflow and Underflow
When doing arithmetic with integer types, the range of the types
has to be considered. If the result is bigger than the maximum
value, the result becomes negative, e.g. using short:

32760 + 100 = −32676

Here, an overflow occured.
Similar behaviour can be observed if the result is less that the
minimum (underflow):

−32760− 100 = 32676

R. Kriemann, »C++ for Scientific Computing« 10/316

Variables and Datatypes

Floating Point Datatypes
Floating point numbers x are represented as

x = s ·m · 2e

with the sign s, the mantissa m and the exponent e.
In C++, like in many other languages, we have two floating point
types

• float: single precision, 23 bits for mantissa, 8 bits for
exponent, x ∈ [−3 · 1038 . . .− 10−38, 0, 10−38 . . . , 3 · 1038],

• double: double precision, 52 bits for mantissa, 11 bits for
exponent, x ∈ [−2 · 10308 . . .− 10−308, 0, 10−308 . . . , 2 · 10308].

Floating point numbers are entered with a dot:
4.0 (double) or 4.0f (float) instead of just 4 (int)

Exponent is defined using scientific notation via ’E’ or ’e’:
4.25 · 10−4 is ”4.25E-4” or ”4.25e-4”

R. Kriemann, »C++ for Scientific Computing« 11/316

Variables and Datatypes

Floating Point Datatypes: Rounding
Since number of bits for representing numbers is limited, real
numbers are rounded, e.g. π:

• float: π̃ = 3.141592741,
• double: π̃ = 3.141592653589793116

This might also lead to wrong results:

π − 3.1415926 ≈ 5.36 · 10−8

but in single precision one obtains

π − 3.1415926 = 1.41 · 10−7.

This effect is also known as cancellation

R. Kriemann, »C++ for Scientific Computing« 12/316

Variables and Datatypes

Floating Point Datatypes: Absorption
When adding two numbers with a large difference in the exponent,
the result might be equal to the larger of the two addend, e.g. in
single precision for x ∈ R:

x+ 1 · 10−8 = x

For any floating point type, the smallest number ε, such that
1 + ε 6= 1 is known as the machine precision:

• for float: ε ≈ 1.2 · 10−7,
• for double: ε ≈ 2.2 · 10−16.

Coding Principle No. 1
Always check if the range and the precision of the floating
point type is enough for your application. If in doubt: use
double precision.

R. Kriemann, »C++ for Scientific Computing« 13/316

Variables and Datatypes

Boolean Datatype
Integer and floating point types are also available in C. In C++ one
also has a boolean type bool, which can be either true or false.

Missing Types
C++ does not have datatypes for strings or complex numbers. Those
have to be implemented by special ways.

R. Kriemann, »C++ for Scientific Computing« 14/316

Variables and Datatypes

Variables
Variables can be declared at (almost) any position in the source file.
The declaration follows the scheme:

〈typename〉 〈variablename〉;
or

〈typename〉 〈variablename1〉, 〈variablename2〉, ...;

Remark
Every statement in C++ is finished with a semicolon.

A name for a variable can contain any alphanumerical character plus
’_’ and must not begin with a number. Also, they can not be
identical to a reserved name used by C++. Variable names are case
sensitive.

R. Kriemann, »C++ for Scientific Computing« 15/316

Variables and Datatypes

Variables
Examples:
int n;
int i, j, k;
float pi, Pi, PI;
double 1_over_pi; // ERROR
double _1_over_pi; // Ok

Coding Principle No. 2
Give your variables a reasonable name.

Variables: Initial Values
When declaring a variable, one can provide an initial value:
int n = 10;
int i, j, k;
float pi = 3.1415926;
double _1_minus_pi = 1.0 - pi;
double max = 1.8e308;

R. Kriemann, »C++ for Scientific Computing« 16/316

Variables and Datatypes

Variables: Initial Values

Coding Principle No. 3
Resource allocation is initialisation (RAII):
Whenever a resource, e.g. variable, is allocated/declared,
it should be initialised with some reasonable value.

Otherwise, strange things might happen, e.g. what is wrong with:
int n = 10;
int i, j, k;
float pi;
double _1_minus_pi = 1.0 - pi;
double max = 1.8e308;

The value of _1_minus_pi is not defined, but only some compilers
will give you a warning about that.

R. Kriemann, »C++ for Scientific Computing« 17/316

Variables and Datatypes

Variables: Usage
Variables can only be used after they have been declared:
const double _1_minus_pi = 1.0 - pi; // ERROR: "pi" is unknown
const float pi = 3.1415926;
const double _2_plus_pi = 2.0 + pi; // Ok: "pi" is defined

Type Modifiers
Each type can be modified with one of the following modifiers:

• const: the value of the variable is fixed,
• static: the variable is declared only once in the whole

program (we’ll come back to that later),
The modifiers can be combined:
const int n = 10;
int i, j, k;
const float pi = 3.1415926;
const double _1_minus_pi = 1.0 - pi;
static const double max = 1.8e308;

R. Kriemann, »C++ for Scientific Computing« 18/316

Variables and Datatypes

Type Modifiers

Coding Principle No. 4
Use const as much as possible.

You avoid errors, e.g. by mistakenly changing the value and the
compiler can optimise more, e.g. replace every occurence by the
actual value.

R. Kriemann, »C++ for Scientific Computing« 19/316

Variables and Datatypes

Pointers and References
A pointer is a special datatype derived from a base type, where the
variable contains the memory position of another variable. The
syntax is:

〈base type〉 * 〈pointer name〉;

The memory position, i.e. the address, of a standard variable is
obtained by the address operator “&”, e.g.

& 〈variable〉

To obtain the value of the memory position, the pointer directs to,
the (unary) dereference operator “*”, e.g.

* 〈variable〉

is available (not to be mistaken with the binary multiplication
operator!).

R. Kriemann, »C++ for Scientific Computing« 20/316

Variables and Datatypes

Pointers and References
Example for the usage of pointers:
int n = 5;
int * p = & n;
int m1, m2;

m1 = n + 3;
m2 = *p + 3; // m2 equal to m1
*p = 6; // this changes the value of n to 6!
m2 = n + 4; // evaluates to 10!

The value of a pointer, e.g. the address, can be assigned to another
pointer:
int * q = p; // q now points to the same position

// as p, hence, to n

n = 2;
m1 = *p + *q // is equivalent to n+n

R. Kriemann, »C++ for Scientific Computing« 21/316

Variables and Datatypes

Pointers and References
A special pointer value, NULL, exists, for the case, that no
standard variable is available to point to:
int * p = NULL;

Dereferencing a NULL pointer is illegal and leads to a program
abort.
Coding Principle No. 5

Always initialise a pointer with the address of an existing
variable or with NULL.

Remark
RAII is even more important when working with pointers
than with standard variables, since undefined pointers
almost always lead to hard to find errors.

R. Kriemann, »C++ for Scientific Computing« 22/316

Variables and Datatypes

Pointers and References
A reference is a special form of a pointer, which can only be
initialised with the address of an existing variable. The syntax is:

〈base type〉 & 〈pointer name〉;

One does not need to dereference references:
int n = 5;
int & r = n;
int m;

m = r + 3; // m == n + 3
r = m; // r still points to n and n == m
m = 0; // r and n are unchanged

And you can not change the address where a reference points to:
int & s = m;

r = s; // r still points to n and n == m (== 0)

R. Kriemann, »C++ for Scientific Computing« 23/316

Variables and Datatypes

Pointers and References
Pointers and references can also be combined with const in various
forms:

int * pn1; // non-const pointer to non-const var.
const int * pn2; // non-const pointer to const var.

int * const pn3; // const pointer to non-const var.
const int * const pn4; // const pointer to const var.

If the pointer is constant, the address it is directing to can not be
changed. If the variable is constant, the value of it can not be
modified:
int n = 0;
const int m = 1;

int * pn1 = & n; // Ok
const int * pn2 = & n; // ERROR
int * const pn3 = & n; // Ok

R. Kriemann, »C++ for Scientific Computing« 24/316

Arithmetic Operators

R. Kriemann, »C++ for Scientific Computing« 25/316

Arithmetic and Assignment Operators

Arithmetic
For integer and floating point types:

x + y;
x - y;
x * y;
x / y;

For integer types, the modulus operator:
x % y;

Remark
No operator for power, like ^ in Matlab.

R. Kriemann, »C++ for Scientific Computing« 26/316

Arithmetic and Assignment Operators

Assignment
Standard assignment (as with initial values)

x = y;

Assignment can be combined with arithmetic, so
x = x + y; x = x - y;
x = x * y; x = x / y;
x = x % y; // for integers

is the same as
x += y; x -= y;
x *= y; x /= y;
x %= y; // for integers

R. Kriemann, »C++ for Scientific Computing« 27/316

Arithmetic and Assignment Operators

Increment and Decrement
In C++ (like in C) exist special versions for variable
increment/decrement:
int n = 0;

++n; // same as n = n + 1 or n += 1
n++;
--n; // same as n = n - 1 or n -= 1
n--;

Difference between preincrement and postincrement, e.g.
int n = 5, m = 5 * n++;

results in n = 6 and m = 25, whereas
int n = 5, m = 5 * ++n;

results in n = 6 and m = 30.

R. Kriemann, »C++ for Scientific Computing« 28/316

Arithmetic and Assignment Operators

Examples

int n1 = 3, n2 = 4;
int n3;

n3 = 2 * n1 - n2 + n1 / 2;
n2 *= 6;
n1 -= 8;

const double approx_pi = 355.0 / 113.0;
double f1 = approx_pi / 2.0;
double f2;

f2 = approx_pi * approx_pi + 10.0 * f1;
f1 /= 5.0;

R. Kriemann, »C++ for Scientific Computing« 29/316

Arithmetic and Assignment Operators

Division by Zero and other undefined Operations
With floating point types:

x/0.0 = INF

for x 6= 0.0. INF is a special floating point number for infinity.
For x = 0.0:

x/0.0 = NAN

NAN (not-a-number) is another special floating point number for
invalid or not defined results, e.g. square root of negative numbers.
Both operations are (usually) performed without notification, i.e.
the program continues execution with these numbers. NANs often
occur with uninitialised variables, therefore RAII.
In integer arithmetic, x/0 leads to an exception, i.e. the program
(usually) aborts.

R. Kriemann, »C++ for Scientific Computing« 30/316

Relational and Logical Operators

Comparison
Standard comparison for integer and floating point types:

x > y; // bigger than
x < y; // less than
x >= y; // bigger or equal
x <= y; // less or equal
x == y; // equal
x != y; // unequal

Logic
Logical operators and, or and not for boolean values:

b1 && b2; // and
b1 || b2; // or
! b1; // not

R. Kriemann, »C++ for Scientific Computing« 31/316

Relational and Logical Operators

Minimal Evaluation
Logical expressions are only evaluated until the result is known. This
is important if the expression contains function calls (see later), or a
sub expression is only allowed if a previous sub expression is true.
int x = 2;
int y = 4;
int z = 4;
bool b;

// z == 4 is not tested
b = (x == 2 && y == 3 && z == 4);

// only x == 2 is tested
b = (x == 2 || y == 3 || z == 4);

// correct, since x != 0 in "y/x"
b = (x != 0 && y/x > 1);

R. Kriemann, »C++ for Scientific Computing« 32/316

Relational and Logical Operators

Floating Point Comparison

Coding Principle No. 6
For floating point types, avoid equality/inequality checks
due to inexact arithmetic.

Better is interval test:
double f1 = sqrt(2.0);
double f2 = f1 * f1;
bool b;

b = (f2 == 2.0); // unsafe

const double eps = 1e-14;

b = (f2 > 2.0 - eps && f2 < 2.0 + eps); // safe
b = (abs(f2 - 2.0) < eps); // even better

R. Kriemann, »C++ for Scientific Computing« 33/316

Precedence and Associativity of Operators

Precedence
When evaluating complex expressions, what is evaluated first, and in
which order? Example:
int n1 = 2 + 3 * 4 % 2 - 5;
int n2 = 4;
bool b = n1 >= 4 && n2 != 3 || n1 < n2;

Precedence of arithmetics follows algebraic/logical precedence, e.g.
* before +, ∧ (&&) before ∨ (||). Increment (++) and decrement
(--) have higher, assignment (=, +=, . . .) has lower priority.
Parentheses have highest priority.
int n1 = (2 + ((3 * 4) % 2) - 5);
int n2 = 4;
bool b = (((n1 >= 4) && (n2 != 3)) || (n1 < n2));

R. Kriemann, »C++ for Scientific Computing« 34/316

Precedence and Associativity of Operators

Associativity
Arithmetic and logical operators are left associative, whereas
assignment operators are right associative:
int n1 = 1 + 2 + 3 + 4;
int n2 = 1 * 2 * 3 * 4;
int n3, n4 , n5;

n3 = n4 = n5 = 0;

is the same as
int n1 = (((1 + 2) + 3) + 4);
int n2 = (((1 * 2) * 3) * 4);
int n3, n4 , n5;

(n3 = (n4 = (n5 = 0)));

R. Kriemann, »C++ for Scientific Computing« 35/316

Precedence and Associativity of Operators

Summary
Priority Associativity Operators
highest left ()

right ++, --, - (unary), !, & (address), *
(dereference)

left * (multiplication), /, %
left +, -
left >, <, >=, <=
left ==, !=
left &&
left ||

lowest right =, +=, -=, *=, /=, %=

R. Kriemann, »C++ for Scientific Computing« 36/316

Precedence of Operators

Usage of Parentheses
Example:
int n1 = 4;
int n2 = 2 + 5 * n1 / 3 - 5;
bool b = n2 >= 4 && n1 != 3 || n2 < n1;

vs.
int n1 = 4;
int n2 = 2 + (5 * n1) / 3 - 5;
bool b = (n2 >= 4) && ((n1 != 3) ||

(n2 < n1));

Coding Principle No. 7
When in doubt or to clarify the expression: use
parentheses.

R. Kriemann, »C++ for Scientific Computing« 37/316

Type Casting

R. Kriemann, »C++ for Scientific Computing« 38/316

Type Casting

Implicit Type Conversion
Up to now, we have only had expressions with either integer or
floating point types. Often, these types are mixed:
const double pi = 3.14159265358979323846;
double f = 1 / (2 * pi);

Here, implicit type conversion occurs: the int numbers 1 and 2 are
automatically converted to the double numbers 1.0 and 2.0,
respectively.
const double pi = 3.14159265358979323846;
int n = 2 * pi;

is also allowed. Here, 2 is first converted to double and the result is
finally converted back to int.

R. Kriemann, »C++ for Scientific Computing« 39/316

Type Casting

Explicit Type Conversion
Explicit conversion between data types is performed via

typename(value)
Examples:
const float pi = float(3.14159265358979323846);
int n = 2 * int(pi);
bool b = bool(n);

Remark
A non-zero value is interpreted as true, a zero value as
false.

The old C syntax (typename) value, e.g.
int n = 2 * (int) pi;

is also allowed, but not recommended.
R. Kriemann, »C++ for Scientific Computing« 40/316

Type Casting

Problems while Casting
Problem 1: Different ranges:
int n1 = 5 - 6;
unsigned int n2 = n1; // underflow

Problem 2: Different precision:
const double pi = 3.14159265358979323846;
float f1 = 2.1;
float f2 = 4 * f1 / pi;

The last expression is computed in double precision. Using
float(pi) instead, would result in pure single precision arithmetic,
which is (usually) faster.

Coding Principle No. 8
Avoid implicit type conversion.

R. Kriemann, »C++ for Scientific Computing« 41/316

Type Casting

Cast Operators
C++ defines four cast operators for various purposes:

• const_cast〈T〉(v) : remove const qualifier of a variable v,
• static_cast〈T〉(v) : classic, compile time type conversion with

type checking
• reinterpret_cast〈T〉(v) : type conversion with correct handling

of variable value and
• dynamic_cast〈T〉(v) : runtime type conversion with type

checking
Since these operators are usually used in connection with classes, we
will come back to them later.

R. Kriemann, »C++ for Scientific Computing« 42/316

Blocks and Scope

R. Kriemann, »C++ for Scientific Computing« 43/316

Blocks and Scope

Blocks
Statements in a C++ program are part of a block, which is enclosed
by ’{’ and ’}’:
{ // ...
}

Remark
The trivial block is defined by a single statement.

Blocks can be arbitrarily nested or otherwise put together:
{ // block 1

{ // subblock 1.1
}
{ // subblock 1.2

{ // sub subblock 1.2.1
}

}
}

R. Kriemann, »C++ for Scientific Computing« 44/316

Blocks and Scope

Variable Scope
Variables can be declared in each block individually, even with the
same name:
{ // block 1

int n1 = 1;
double f1 = 0.0;

}
{ // block 2

int n1 = 2; // n1 has value 2 in this block
}

but not twice in the same block:
{

int n1 = 1;
// ...
int n1 = 2; // ERROR

}

R. Kriemann, »C++ for Scientific Computing« 45/316

Blocks and Scope

Variable Scope
A variable is declared in the local block and all enclosed blocks:
{ // block 1: n1 declared

int n1 = 1;

{ // block 1.1: n1, n2 declared
int n2 = 2;

{ // block 1.1.1: n1, n2 declared
}

}

int n4 = 4;

{ // block 1.2: n1, n4, n3 declared
int n3 = 3;

}
}

R. Kriemann, »C++ for Scientific Computing« 46/316

Blocks and Scope

Variable Scope
Variables with the same name can also be declared in nested blocks.
{ // block 1

int n1 = 1; // n1 == 1

{ // block 1.1
int n1 = 2; // n1 == 2

}
// n1 == 1

{ // block 1.2
int n1 = 3; // n1 == 3

}
{ // block 1.3

n1 = 4;
}

// n1 == 4 !!!
}

R. Kriemann, »C++ for Scientific Computing« 47/316

Blocks and Scope

Variable Scope
A reference to a variable will always be made to the first declaration
found when going up the hierarchy of enclosing blocks.
{ // block 1

int m, n1 = 1;

{ // block 1.1
int n2 = 2;

{ // block 1.1.1
m = n1 + n2; // evaluates to m = 3

}
}
{ // block 1.2

int n2 = 3;

m = n1 + n2; // evaluates to m = 4
}

}

R. Kriemann, »C++ for Scientific Computing« 48/316

Blocks and Scope

Variable Scope

Remark
Using variables with same name in nested blocks is not
recommended, since that often leads to erroneous
programs.

R. Kriemann, »C++ for Scientific Computing« 49/316

Blocks and Scope

Variable Lifetime
The scope of a variable also defines their lifetime, e.g. the time
where resources are needed for the variable. For non-static
variables, memory is allocated if a declaration is encountered and
released, when the leaving the block holding the declaration:
{

int n = 0; // memory for an integer is allocated

{
double f = 1.2; // memory for a double is allocated
...

} // memory for "f" is released
} // memory for "n" is released

For static variables, the memory will never be released and only
allocated once per program run:
{

static int m = 10; // allocate memory once
} // memory for "m" is not released

R. Kriemann, »C++ for Scientific Computing« 50/316

Control Structures

R. Kriemann, »C++ for Scientific Computing« 51/316

Control Structures

Conditional Structure
A condition is defined by

if (〈condition〉) 〈block〉

where 〈block〉 is executed if 〈condition〉 is true or
if (〈condition〉) 〈if_block〉
else 〈else_block〉

where additionally 〈else_block〉 is executed if 〈condition〉 is false,
e.g.
int n = 1;

i f (n > 0)
{

n = n / n;
}

i f (n < 0) n += 5; // NOTE: trivial block!
else n -= 6;

R. Kriemann, »C++ for Scientific Computing« 52/316

Control Structures

C++ supports three different loops: for loops, while loops and
do-while loops.

For Loops
for (〈start stmt.〉 ; 〈loop condition〉 ; 〈loop stmt.〉)
〈block〉

The start statement is executed before the loop is entered. Before
each iteration, the loop condition is evaluated. If it is false, the loop
is finished. After each iteration, the loop statement is executed.
Example for factorial:
int n = 1;

for (int i = 1; i < 10; ++i)
{

n = n * i;
}

R. Kriemann, »C++ for Scientific Computing« 53/316

Control Structures

While Loops
while (〈loop condition〉)
〈block〉

The loop iterates until the loop condition is no longer true, i.e.
evaluates to false. The condition is checked before each iteration.
Example for factorial:
int n = 1;
int i = 1;

while (i < 10)
{

n *= i;
++i;

}

R. Kriemann, »C++ for Scientific Computing« 54/316

Control Structures

Do-While Loops
do
〈block〉

while (〈loop condition〉);

The loop condition is tested after each iteration. Hence, the block is
at least executed once.
Example for factorial:
int n = 1;
int i = 1;

do
{

n *= i;
++i;

} while (i < 10);

R. Kriemann, »C++ for Scientific Computing« 55/316

Control Structures

Breaking out of Loops
To finish the current loop immediately, e.g. without first testing the
loop condition, the keyword break can be used:
int n = 1;

for (int i = 1; i < 20; ++i)
{

// avoid overflow
i f (n > 21474836)

break;

n = n * i;
}

R. Kriemann, »C++ for Scientific Computing« 56/316

Control Structures

Breaking out of Loops
Only the current loop is finished, not all enclosing loops:
for (int j = 1; j < 20; ++j)
{

int n = 1;

for (int i = 1; i < j; ++i)
{

i f (n > 21474836) // break here
break;

n = n * i;
}

cout << n << endl; // and continue here
}

R. Kriemann, »C++ for Scientific Computing« 57/316

Control Structures

Finish current Iteration
To immediately finish the current iteration of a loop use the
keyword continue:
int n2 = 0;

for (int i = 0; i < 1000; i++)
{

// skip odd numbers
i f (i % 2 == 1)

continue;

n2 += i;
}

After continue, the loop condition of a loop is tested. In for-loops,
the loop statement is first evaluated.

Remark
Again, continue effects only the current loop.

R. Kriemann, »C++ for Scientific Computing« 58/316

Control Structures

Selective Statement
To directly switch between several cases, the switch structure can
be used:

switch (〈value〉) {
case 〈CASE 1〉 : 〈statements〉; break;
case 〈CASE 2〉 : 〈statements〉; break;
...
case 〈CASE n〉 : 〈statements〉; break;
default : 〈statements〉

}

The type of 〈value〉 must be some integral typ, i.e. it can be
mapped to an integer type. Hence, floating point or more advanced
types (later) are not possible.

R. Kriemann, »C++ for Scientific Computing« 59/316

Control Structures

Selective Statement
Example for a switch statement:
unsigned int i = 3;
unsigned int n;

switch (i)
{
case 0 : n = 1; break;
case 1 : n = 1; break;
case 2 : n = 2; break;
case 3 : n = 6; break;
case 4 : n = 24; break;
default : n = 0; break;
}

Coding Principle No. 9
Always implement the default case to avoid unhandled
cases.

R. Kriemann, »C++ for Scientific Computing« 60/316

Control Structures

Selective Statement
If break is missing after the statements for a specific case, the
statements of the next case are also executed:
unsigned int i = 3;
unsigned int n;

switch (i)
{
case 0 :
case 1 : n = 1; break; // executed for i == 0 and i == 1
case 2 : n = 2; break;
case 3 : n = 6; break;
case 4 : n = 24; break;
default : n = 0; break;
}

R. Kriemann, »C++ for Scientific Computing« 61/316

Control Structures

Selective Statement
A switch statement can be implemented via if and else:
unsigned int i = 3;
unsigned int n;

i f (i == 0) { n = 1; }
else i f (i == 1) { n = 1; }
else i f (i == 2) { n = 2; }
else i f (i == 3) { n = 6; }
else i f (i == 4) { n = 24; }
else { n = 0; } // default statement

Remark
Using switch is faster than if-else, among other things
since less comparisons are performed!

R. Kriemann, »C++ for Scientific Computing« 62/316

Functions

R. Kriemann, »C++ for Scientific Computing« 63/316

Functions

Function Definition
The definition of a function in C++ follows

〈return type〉
〈function name〉 (〈argument list〉)
〈block〉

When a function does not return a result, e.g. a procedure, then the
return type is void.
To return a value from a function, C++ provides the keyword return.
double
square (const double x)
{

return x*x;
}

R. Kriemann, »C++ for Scientific Computing« 64/316

Functions

Function Call
A function is called by

〈function name〉 (〈argument1〉, 〈argument2〉, . . .);

Example:
double y = square(4.3);

One can not define a function in the body of another function:
double cube (const double x)
{

// ERROR
double square (const double y) { return y*y; }

return square(x) * x;
}

R. Kriemann, »C++ for Scientific Computing« 65/316

Functions

Function Examples
Previous computation of factorial in functional form:
int
factorial (const int n)
{

int f = 1;

for (int i = 1; i <= n; i++)
f *= i;

return f;
}

Coding Principle No. 10
Make all function arguments const, except when changing
value (see later).

R. Kriemann, »C++ for Scientific Computing« 66/316

Functions

Function Examples (Cont.)
Power function with positive integer exponents:
double
power (const double x, const unsigned int n)
{

switch (n)
{

case 0 : return 1;
case 1 : return x;
case 2 : return square(x);
default:
{

double f = x;
for (int i = 0; i < n; i++) f *= x;
return f;

} } }

Coding Principle No. 11
Make sure, that a function has a call to return in every
execution path.

R. Kriemann, »C++ for Scientific Computing« 67/316

Functions

Main Function
The main function is the first function called by the operating
system in your program. Every program must have exactly one main
function.
In principle, only code in main and functions called directly or
indirectly from main will be executed.
The main function may be implemented without arguments and has
a return type of int:
int
main ()
{

... // actual program code
return 0;

}

The value returned from main is supplied to the operating system.
As a standard, a value of 0 signals no error during program
execution.

R. Kriemann, »C++ for Scientific Computing« 68/316

Functions

Call by Value
In previous examples, only the value of a variable (or constant) is
used as the argument of a function, e.g. changing the value of the
argument does not change the value of the original variable:
int
f (int m) // non const argument!
{

m = 4; // explicitly changing the value of argument m
return m;

}

int m = 5;
int n = f(m); // m is unchanged by f

This is known as call-by-value.

Remark
It is nevertheless advised to use const arguments.

R. Kriemann, »C++ for Scientific Computing« 69/316

Functions

Call by Reference
If the original variable should be changed in a function, a pointer or
reference to this variable has to be supplied:
int
f (int & m) // reference argument
{

m = 4; // changing m, changes the variable pointed to
return m;

}

int m = 5;
int n = f(m); // m is changed by f to 4

This is known as call-by-reference.

R. Kriemann, »C++ for Scientific Computing« 70/316

Functions

Call by Reference
The same function with pointers:
int
f (int * m) // reference argument
{

*m = 4; // changing m, changes the variable pointed to
return *m;

}

int m = 5;
int n = f(& m); // m is changed by f to 4

R. Kriemann, »C++ for Scientific Computing« 71/316

Functions

Call by Reference
When using references to constant variables, the value can not be
changed:
int
f (const int & m)
{

m = 4; // ERROR: m is constant
return m;

}

Therefore, this is (almost) equivalent to call-by-value and needed for
advanced datatypes (see later).
For basic datatypes, using call-by-reference, even with const, is
usually not advisable, except when changing the original variable.

R. Kriemann, »C++ for Scientific Computing« 72/316

Functions

Call by Reference
Example for multiple return values
void
min_max (const int n1, const int n2, const int n3,

int & min, int & max)
{

i f (n1 < n2)
i f (n1 < n3)
{

min = n1;

i f (n2 < n3) max = n3;
else max = n2;

}
else
{

min = n3;
max = n2;

}
else

...
}

R. Kriemann, »C++ for Scientific Computing« 73/316

Functions

Recursion
Calling the same function from inside the function body, e.g. a
recursive function call, is allowed in C++:
unsigned int
factorial (const unsigned int n)
{

i f (n <= 1)
return 1;

else
return n * factorial(n-1);

}

Remark
The recursion depth, i.e. the number of recursive calls, is
limited by the size of the stack, a special part of the
memory. In practise however, this should be of no concern.

R. Kriemann, »C++ for Scientific Computing« 74/316

Functions

Recursion
It is also possible to perform recursive calls multiple times in a
function:
unsigned int
fibonacci (const unsigned int n)
{

unsigned int retval;

i f (n <= 1) retval = n;
else retval = fibonacci(n-1) +

fibonacci(n-2);

return retval;
}

Remark
Remember, that variables belong to a specific block and
each function call has it’s own block. Therefore, variables,
e.g. retval, are specific to a specific function call.

R. Kriemann, »C++ for Scientific Computing« 75/316

Functions

Function Naming
A function in C++ is identified by it’s name and the number and
type of it’s arguments. Hence, the same name can be used for
different argument types:
int square (const int x) { return x*x; }
float square (const float x) { return x*x; }
double square (const double x) { return x*x; }

Coding Principle No. 12
Functions implementing the same algorithm on different
types should be named equal.

This can significantly reduce the number of different functions you’ll
have to remember und simplifies programming.

R. Kriemann, »C++ for Scientific Computing« 76/316

Functions

Function Naming
If only the return type is different between functions, they are
identified as equal:
float f (int x) { ... }
double f (int x) { ... } // ERROR: "f" already defined

R. Kriemann, »C++ for Scientific Computing« 77/316

Functions

Default Arguments
Arguments for a function can have default arguments, which then
can be omitted at calling the function:
void
f (int n, int m = 10)
{

// ...
}

{
f(5); // equivalent to f(5, 10)
f(5, 8);

}

Only limitation: after the first default value, all arguments must
have default values:
void g1 (int n, int m = 10, int k); // ERROR
void g2 (int n, int m = 10, int k = 20); // Ok

R. Kriemann, »C++ for Scientific Computing« 78/316

Functions

Default Arguments and Function Names
Two functions with the same name must differ by their arguments
without default values:
void f (int n1, int n2, int n3 = 1) { ... }
void f (int n1, int n2) { ... }

...

{
f(1, 2, 3); // Ok: call to f(int, int, int)
f(1, 2); // Error: call of "f(int, int)" is ambiguous

}

R. Kriemann, »C++ for Scientific Computing« 79/316

Functions

Function Name Scope
A function can only be called, if it was previously implemented:
void f (int x)
{

g(x); // ERROR: function "g" unknown
}

void g (int y)
{

f(y); // Ok: function "f" already defined
}

or declared, i.e. definition of function without function body:
void g (int y); // forward declaration

void f (int x)
{

g(); // Ok: "g" is declared
}

This is known as forward declaration.
R. Kriemann, »C++ for Scientific Computing« 80/316

Functions

Function Name Scope
Of course, every function with a forward declaration has to be
implemented eventually:
void g (int y); // forward declaration

void f (int x)
{

g();
}

...

void g (int y) // implementation
{

f(y);
}

R. Kriemann, »C++ for Scientific Computing« 81/316

Functions

Inline Functions
Calling a function involves some overhead. For small functions, this
overhead might exceed the actual computation:
double square (const double x) { return x*x; }

{
double f = 0;

for (int i = 0; i < 100; i++)
f += square(double(x));

}

Here, simply calling square takes a significant part of the runtime.
Some compilers automatically replace the function call by the
function body:
...

for (int i = 0; i < 100; i++)
f += double(x) * double(x);

...

R. Kriemann, »C++ for Scientific Computing« 82/316

Functions

Inline Functions
Replacing the function call by the function body is called inlining.
To help the compiler with such decisions, functions can be marked
to be inlined by the keyword inline:
inline double
square (const double x)
{

return x*x;
}

Especially for small functions, this often dramatically increases
program performance.

Remark
If the function body is too large, inlining can blow up the
program since too much code is compiled, e.g. every
occurence of the function, and therefore decreases
performance!

R. Kriemann, »C++ for Scientific Computing« 83/316

Functions

Function Pointers
A function, like a variable, is stored somewhere in the memory and
therefore, also has an address. Hence, a pointer can be aquired for
it. For a function

〈return type〉 〈function name〉 (〈argument list〉);

a pointer is defined by
〈return type〉 (* 〈variable name〉) (〈argument list〉);

Example:
int f (const int n, int & r);

{
int (* pf) (const int n, int & r); // function ptr named "pf"

pf = f;
}

R. Kriemann, »C++ for Scientific Computing« 84/316

Functions

Function Pointers
A variable holding the address of a function can be used as a
function by itself:
int n = 0;

pf = f; // pf holds address to f
pf(2, n); // call to f

Since function pointers are normal variables, they can be supplied as
function arguments:
double f1 (const double x) { return x*x; }

double f2 (double (* func) (const double x),
const double x) { return func(x); }

int main ()
{

f2(f1, 2.0); // returns f1(2.0)
}

R. Kriemann, »C++ for Scientific Computing« 85/316

Functions

Function Pointers
Example: apply Simpson rule to various functions
double
simpson_quad (const double a, const double b,

double (* func) (const double))
{

return (b-a) / 6.0 * (func(a) +
4 * func((a+b) / 2.0) +
func(b));

}

double f1 (const double x) { return x*x; }
double f2 (const double x) { return x*x*x; }

int main ()
{

cout << simpson_quad(-1, 2, f1) << endl;
cout << simpson_quad(-1, 2, f2) << endl;

}

R. Kriemann, »C++ for Scientific Computing« 86/316

Functions

Functions and Minimal Evaluation
As discussed, C++ uses minimal evaluation when looking at logical
expressions, e.g. only evalutates until results is known. If functions
are used in the expressions, it can imply, that they are not called at
all:
double f (const double x) { ... }

...
// f is not called if x >= 0.0
i f ((x < 0.0) && (f(x) > 0.0))
{

...
}

For the programmer this means:

Coding Principle No. 13
Never rely on a function call in a logical expression.

R. Kriemann, »C++ for Scientific Computing« 87/316

Functions

Functions and static Variables
In contrast to standard variables in a function, which are specific to
a specific function call, for static variables in all function calls the
same instance, e.g. memory position, is referenced:
double
f (const double x, long & cnt)
{

static long counter = 0; // allocated and initialised
// once per program

cnt = ++counter;

return 2.0*x*x - x;
}

int main ()
{

long cnt = 0;

for (double x = -10; x <= 10.0; x += 0.1)
f(x, cnt);

cout << cnt << endl; // print number of func. calls
}

R. Kriemann, »C++ for Scientific Computing« 88/316

Arrays and Dynamic Memory

R. Kriemann, »C++ for Scientific Computing« 89/316

Arrays and Dynamic Memory

Array Definition
So far, we had only datatypes with one entry per variable. Arrays
with a fixed number of entries are defined as:

〈datatype〉 〈variablename〉[〈number of entries〉];

where the number of entries is a constant, e.g.
int n[5];
double f[10];
const int len = 32;
char str[len];

Arrays can also be preinitialised. In that case, the array size can be
omitted:
int n1[5] = { 0, 1, 2, 3, 4, 5 };
int n2[] = { 3, 2, 1, 0 }; // automatically size of 4

R. Kriemann, »C++ for Scientific Computing« 90/316

Arrays and Dynamic Memory

Array Access
A single entry in an arrays is accessed by the index operator [·]:
double f[5];
int i;

f[0] = -1.0;
f[1] = 3.0;
f[4] = f[1] * 42.0;

i = 3;
f[i] = f[0] + 8.0;

In C++, indices are counted from zero. The valid index range is
therefore:

[0, . . . , array size− 1]

for (int i = 0; i < 5; i++)
f[i] = 2*i;

R. Kriemann, »C++ for Scientific Computing« 91/316

Arrays and Dynamic Memory

Array Access
There are normally no array boundary checks in C++, i.e. you can
specify arbitrary, even negative indices, resulting in an undefined
program behaviour.
Typical error:
double f[5];

for (int i = 0; i < 5; i++) // Ok
f[i] = 2*i;

for (int i = 0; i <= 5; i++) // Bug
f[i] = 2*i;

Coding Principle No. 14
Always make sure, that you access arrays within the valid
index range.

R. Kriemann, »C++ for Scientific Computing« 92/316

Arrays and Dynamic Memory

Array Operations
Unfortunately, there are no operators for arrays, e.g. no assignment,
elementwise addition or multiplication like in other languages. All of
these have to be programmed by yourself:
void copy (const double x[3], double y[3])
{

for (int i = 0; i < 3; i++)
y[i] = x[i];

}

void add (const double x[3], double y[3])
{

for (int i = 0; i < 3; i++)
y[i] += x[i];

}

Remark
Arrays can be used as function arguments like all basic
datatypes. But not as function return types!

R. Kriemann, »C++ for Scientific Computing« 93/316

Arrays and Dynamic Memory

Multidimensional Arrays
So far, all arrays have been onedimensional. Multidimensional arrays
are defined analogously by appending the corresponding size per
dimension:
int M[3][3];
double T3[10][10][10];
long T4[100][20][50];

The access to array elements in multidimensional arrays follows the
same pattern:
M[0][0] = 1.0; M[0][1] = 0.0; M[0][2] = -2.0;
M[1][0] = 0.0; M[1][1] = 4.0; M[1][2] = 1.0;
M[2][0] = -2.0; M[2][1] = 1.0; M[2][2] = -1.5;

for (int i = 0; i < 100; i++)
for (int j = 0; j < 20; j++)

for (int k = 0; k < 50; k++)
T3[i][j][k] = double(i+j+k);

R. Kriemann, »C++ for Scientific Computing« 94/316

Arrays and Dynamic Memory

Multidimensional Arrays
Example: Matrix-Vector multiplication
void
mulvec (const double M[3][3],

const double x[3],
double y[3])

{
for (int i = 0; i < 3; i++)
{

y[i] = 0.0;

for (int j = 0; j < 3; j++)
y[i] += M[i][j] * x[j];

}
}

R. Kriemann, »C++ for Scientific Computing« 95/316

Arrays and Dynamic Memory

Arrays and Pointers
C++ does not support variable sized arrays as an intrinsic datatype.
Hence, arrays with an unknown size at compile time are not possible
with previous array types in C++.
But, in C++, there is no distinction between a pointer and an array.
A pointer not only directs to some memory address, it is also the
base point, e.g. index 0, of an array.
int n[5] = { 2, 3, 5, 7, 11 };
int * p = n;

cout << p[0] << endl; // yields n[0]
cout << p[1] << endl; // yields n[1]
cout << p[4] << endl; // yields n[4]

The index operator [i] of a pointer p gives access to the i’th
element of the array starting at address p.

R. Kriemann, »C++ for Scientific Computing« 96/316

Arrays and Dynamic Memory

Dynamic Memory
Since pointers and arrays are equivalent, one needs to initialise a
pointer with the address of a memory block large enough to hold
the wanted array. This is accomplished by dynamic memory
management:

Memory of arbitrary size can be allocated and deallocated
at runtime.

In C++ this is done with the operators new and new[·] to allocate
memory and delete and delete[·] to deallocate memory.
For a single element:

〈datatype〉 * p = new 〈datatype〉;
delete p;

For more than one element:
〈datatype〉 * p = new 〈datatype〉[〈size〉];
delete[] p;

R. Kriemann, »C++ for Scientific Computing« 97/316

Arrays and Dynamic Memory

Dynamic Memory
Examples:
char * s = new char[100];
int n = 1024;
double * v = new double[n];
float * f = new float;

for (int i = 0; i < n; i++)
v[i] = double(square(i));

*f = 1.41421356237; // dereference f

...

delete[] v; // new[] => delete[]
delete[] s;
delete f; // new => delete

Remark
The size parameter to new does not need to be a
constant.

R. Kriemann, »C++ for Scientific Computing« 98/316

Arrays and Dynamic Memory

Problems with Pointers
The corresponding array to a pointer has no information about the
array size. Remember, that C++ performs no boundary checks. That
opens the door to many errors (see Coding Principle No. 14).
double * v = new double[1000];

...

v[2000] = 1.0;

With the last instruction, you overwrite a memory position
corresponding to completely other data. The program will only
terminate, if the memory does not belong to the program
(segmentation fault).

R. Kriemann, »C++ for Scientific Computing« 99/316

Arrays and Dynamic Memory

Problems with Pointers
The programmer does not know if the memory was allocated or
deallocated, except if the pointer contains NULL (see Coding
Principle No. 5).
double * v = new double[1000];

...

delete[] v;

...

v[100] = 2.0; // Bug: memory for v is deallocated

Again, the last instruction will be executed and will only result in an
immediate error, if the memory is no longer part of the program.

Coding Principle No. 15
After calling delete, reset the pointer value to NULL.

R. Kriemann, »C++ for Scientific Computing« 100/316

Arrays and Dynamic Memory

Problems with Pointers
Memory addressed by forgotten pointers is lost for the program.
C++ does not automatically delete memory with no references to it
(garbage collection).
void f ()
{

double * v = new double[1000];
... // no delete[] v

}
// v is no longer accessible, memory is lost

This bug is not directly a problem, since no other data is
overwritten. But if a lot of memory is not deleted after use, the
program will have no available memory left.

Coding Principle No. 16
Always make sure, that allocated memory is deallocated
after using.

R. Kriemann, »C++ for Scientific Computing« 101/316

Arrays and Dynamic Memory

Problems with Pointers

Remark
The aftermath of a pointer related bug, e.g. array
boundary violation or accessing deleted memory, may show
up much later than the actual position of the error.

Summary: pointers are dangerous and require careful programming.
But we have no choice /.

Well, almost , (see later).

R. Kriemann, »C++ for Scientific Computing« 102/316

Arrays and Dynamic Memory

Problems with Pointers

Remark
The aftermath of a pointer related bug, e.g. array
boundary violation or accessing deleted memory, may show
up much later than the actual position of the error.

Summary: pointers are dangerous and require careful programming.
But we have no choice /. Well, almost , (see later).

R. Kriemann, »C++ for Scientific Computing« 102/316

Arrays and Dynamic Memory

Multidimensional Arrays with Pointers
The analog of multidimensional arrays are pointers of pointers, i.e.
pointers which direct to a memory address containing a pointer to
another memory address:
int n[5] = { 2, 3, 5, 7, 11 };
int * p1 = & n[2];
int ** p2 = & p1;

p2 p1

2 3 5 7 11

Memory (array)

This can be generalised to multiple dimensions:
int n1[4], n2[4], n3[4], n4[4];
int * p1 = n1;
int * p2 = n2;
int * p3 = n3;
int * p4 = n4;

int * p[4] = { p1, p2, p3, p4 };

cout << p[1][3] << endl; // yields 8

1 2 3 4

5 6 7 8

9 8 7 6

5 4 3 2

p4

p2

p1

= n1

= n2

= n3

= n4

p3

p

R. Kriemann, »C++ for Scientific Computing« 103/316

Arrays and Dynamic Memory

Multidimensional Arrays with Pointers
The same example with dynamic memory:
int * p1 = new int[4];
int * p2 = new int[4];
int * p3 = new int[4];
int * p4 = new int[4];

int ** p = new int*[4];

p[0] = p1;
p[1] = p2;
p[2] = p3;
p[3] = p4;

p[0][0] = 1;
p[0][1] = 2;
...
p[2][2] = 7;
p[2][3] = 6;
p[3][0] = 5;
...

1 2 3 4

5 6 7 8

9 8 7 6

5 4 3 2

p4

p2

p1

= n1

= n2

= n3

= n4

p3

p

R. Kriemann, »C++ for Scientific Computing« 104/316

Arrays and Dynamic Memory

Multidimensional Arrays with Mappings
Working with pointers to pointers is only one way to implement
multidimensional arrays. You can also map the multiple dimensions
to just one:

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2

p

= n1 = n2 = n3 = n4

global Memory

int * p = new int[4*4];

p[2 * 4 + 1] = 8; // p[2][1]
p[0 * 4 + 2] = 3; // p[0][2]

R. Kriemann, »C++ for Scientific Computing« 105/316

Arrays and Dynamic Memory

Multidimensional Arrays with Mappings
In theory, one could use any mapping. In practise, two different
mappings are standard:

• row-wise: standard in C, C++
• column-wise: standard in

Fortran, Matlab
column−wiserow−wise

For a two-dimensional array, e.g. a matrix, with dimensions n×m,
the mappings are for index (i, j):

• row-wise: i ·m+ j,
• column-wise: j · n+ i.

It is up to you, which mapping you prefer.

R. Kriemann, »C++ for Scientific Computing« 106/316

Arrays and Dynamic Memory

Example: n×m Matrix (row-wise)

void
set_entry (const double * M,

const int i, const int j,
const int m, const double f)

{
M[i*m + j] = f;

}

int
main ()
{

int n = 10;
int m = 20;
double * M = new double[n * m];

set_entry(M, 3, 1, m, 3.1415);
set_entry(M, 2, 7, m, 2.7182);

}

R. Kriemann, »C++ for Scientific Computing« 107/316

Arrays and Dynamic Memory

Comparison: Pointers vs. Mapping
Two approaches have been introduced for multidimensional arrays:
pointers of pointers and user defined mapping. Which is to be
preferred?
A user defined mapping is faster since only simple arithmetic is
performed for a memory access. The pointer based approach needs
to follow each pointer individually, resulting in many memory
accesses.
Pointers are more flexible, e.g. for triangular matrices, whereas a
special mapping has to be defined for each shape.
My recommendation: use mappings, especially if you want fast
computations.

R. Kriemann, »C++ for Scientific Computing« 108/316

Arrays and Dynamic Memory

Application: BLAS
Properties and requirements:

• vectors are onedimensional arrays, matrices implemented via
mapping (row-wise),

• should provide functions for all standard operations, e.g.
creation, access, linear algebra

Initialisation:
inline double *
vector_init (const unsigned i)
{

return new double[i];
}

inline double *
matrix_init (const unsigned n, const unsigned m)
{

return new double[n * m];
}

R. Kriemann, »C++ for Scientific Computing« 109/316

Arrays and Dynamic Memory

Application: BLAS
Vector Arithmetic:
void fill (const unsigned n, const double f, double * y);
void scale (const unsigned n, const double f, double * y);

void add (const unsigned n, const double f, const double * x,
double * y)

{ for (unsigned i = 0; i < n; i++) y[i] += f * x[i]; }

double
dot (const unsigned n, const double * x, const double * y)
{

double d = 0.0;

for (unsigned i = 0; i < n; i++) d += x[i] * y[i];
return d;

}

inline double
norm2 (const unsigned n, const double * x)
{ return sqrt(dot(n, x, x)); }

R. Kriemann, »C++ for Scientific Computing« 110/316

Arrays and Dynamic Memory

Application: BLAS
Matrix Arithmetic:
void
fill (const unsigned n, const unsigned m,

const double f, double * M)
{ fill(n*m, f, M); } // use vector based fill

void
scale (const unsigned n, const unsigned m,

const double f, double * M);

void
add (const unsigned n, const unsigned m,

const double f, const double * A, double * M);

inline double
normF (const unsigned n, const unsigned m,

double * M)
{ return norm2(n*m, M); } // use vector based norm2

R. Kriemann, »C++ for Scientific Computing« 111/316

Arrays and Dynamic Memory

Application: BLAS
Matrix-Vector Multiplication y := y + αA · x:
void
mul_vec (const unsigned n, const unsigned m,

const double alpha, const double * M, const double * x,
double * y)

{
for (unsigned i = 0; i < n; i++)
{

double f = 0.0;

for (unsigned j = 0; j < m; j++)
f += get_entry(n, m, i, j, M) * x[j];

// alternative: f = dot(m, & M[i * m], x);

y[i] += alpha * f;
}

}

Remark
Compute dot product in local variable to minimize
memory accesses.

R. Kriemann, »C++ for Scientific Computing« 112/316

Arrays and Dynamic Memory

Application: BLAS
Matrix-Matrix Multiplication C := C + αA ·B:
void
mul_mat (const unsigned n, const unsigned m, const unsigned k,

const double alpha, const double * A, const double * B,
double * C)

{
for (unsigned i = 0; i < n; i++)

for (unsigned j = 0; j < m; j++)
{

double f = 0.0;

for (unsigned l = 0; l < k; l++)
f += get_entry(n, k, i, l, A) *

get_entry(k, m, l, j, B);

add_entry(n, m, i, j, f, M);
}

}

R. Kriemann, »C++ for Scientific Computing« 113/316

Arrays and Dynamic Memory

Application: BLAS

double * M = matrix_init(10, 10);
double * x = vector_init(10);
double * y = vector_init(10);

fill(10, 1.0, x);
fill(10, 0.0, y);

... // fill matrix M

cout << normF(10, 10, M) << endl;

mul_vec(10, 10, -1.0, M, x, y);

R. Kriemann, »C++ for Scientific Computing« 114/316

Arrays and Dynamic Memory

Strings
One important datatype was not mentioned up to now: strings.
Strings are implemented in C++ as arrays of characters, e.g.

char str[] or char * str

As arrays have no size information, there is no information about
the length of a string stored. To signal the end of a string, by
convention the character ’0’ is used (as an integer, not the digit),
entered as ’\0’:
char str[] = { ’S’, ’t’, ’r’, ’i’, ’n’, ’g’, ’\0’ };

Constant strings can also be defined and used directly with ‘‘· · · ’’:
char str[] = "String"; // array initialisation

Here, ’\0’ is automatically appended.

R. Kriemann, »C++ for Scientific Computing« 115/316

Arrays and Dynamic Memory

Strings
If a string is too long for one input line, it can be wrapped by a
backslash ’\’:
const char * str = "This is a very long \
string";

C++ does not provide operators for string handling, e.g.
concatenation or searching for substrings. All of that has to be
implemented via functions:
char * concat (const char * str1, const char * str2)
{

const unsigned len1 = strlen(str1);
const unsigned len2 = strlen(str2);
char * res = new char[len1 + len2 + 1];
int pos = 0, pos2 = 0;

while (str1[pos] != ’\0’) { res[pos] = str1[pos]; pos++; }
while (str2[pos2] != ’\0’) { res[pos++] = str2[pos2++]; }
res[pos] = ’\0’;

return res;
}

R. Kriemann, »C++ for Scientific Computing« 116/316

Arrays and Dynamic Memory

Strings
Usage:
const char * str1 = "Hallo ";
char * str2 = concat(str1, "World");

cout << str2 << endl;

delete[] str2; // don’t forget to deallocate!

It can not be emphasised too much:

Coding Principle No. 17
Always ensure, that strings are terminated by ’\0’.

Otherwise, operations on strings will fail due to array boundary
violations.

R. Kriemann, »C++ for Scientific Computing« 117/316

Arrays and Dynamic Memory

Strings
’\0’ is one example of a special character in C++ strings. Others are

Character Result
’\n’ a new line
’\t’ a tab
’\r’ a carriage return
’\b’ a backspace
’\′’ single quote ’′’
’\“’ double quote ’“’
’\\’ backslash ’\’

Examples:
cout << "First \t Second" << endl;
cout << "line1 \n line2" << endl;
cout << "special \"word\"" << endl;
cout << "set1 \\ set2" << endl;

R. Kriemann, »C++ for Scientific Computing« 118/316

Advanced Datatypes

R. Kriemann, »C++ for Scientific Computing« 119/316

Advanced Datatypes

Type Definition
Often you do not always want to care about the actual datatype
used in your program, e.g. if it is float or double or if strings are
char *, but instead give the types more reasonable names, e.g.
real or string. In C++ you can do this via typedef:

typedef 〈data type〉 〈name〉;

Afterwards, 〈name〉 can be used like any other datatype:
typedef double real_t;
typedef char * string_t;
typedef real_t ** matrix_t; // pointers of pointers

const string_t str = "String";
matrix_t A = new real_t*[10];
real_t f = real_t(3.1415926);

R. Kriemann, »C++ for Scientific Computing« 120/316

Advanced Datatypes

Type Definition

Remark
A real_t datatype allows you to easily change between
float and double in your program.

To simplify the destinction between variables and datatypes, the
following is strongly advised:

Coding Principle No. 18
Follow a strict convention in naming new types, e.g. with
special prefix or suffix.

R. Kriemann, »C++ for Scientific Computing« 121/316

Advanced Datatypes

Predefined Types
The C++ library and the operating system usually define some
abbreviations for often used types, e.g.

• uint: unsigned integer, sometimes special versions uint8,
uint16 and uint32 for 8, 16 and 32 bit respectively,

• similar int8, int16 and int32 are defined for signed integers,
• size_t : unsigned integer type for holding size informations

best suited for the local hardware
• ssize_t : analog to size_t but signed integer (not always

available)

R. Kriemann, »C++ for Scientific Computing« 122/316

Advanced Datatypes

Records
Working with vectors and matrices always involved several variables,
e.g. the size and the arrays. That results in many arguments to
functions and hence, to possible errors. It would be much better to
store all associated data together. That is done with records:

struct 〈record name〉 {
〈datatype 1〉 〈name 1〉;
...
〈datatype n〉 〈name n〉;

};

By defining a struct, also a new type named 〈record name〉 is
defined.

R. Kriemann, »C++ for Scientific Computing« 123/316

Advanced Datatypes

Records
Example:
struct vector_t {

size_t size;
real_t * coeffs;

};

struct matrix_t {
size_t nrows, ncolumns;
real_t * coeffs;

};

void
mul_vec (const real_t alpha,

const matrix_t & A,
const vector_t & x,
vector_t & y);

struct triangle_t {
int vtx_idx[3]; // indices to a vertex array
real_t normal[3];
real_t area;

};

R. Kriemann, »C++ for Scientific Computing« 124/316

Advanced Datatypes

Access Records
The individual variables in a record are accessed via “.”, e.g.:
vector_t x;

x.size = 10;
x.coeffs = new real_t[x.size];

If a pointer to a record is given, the access can be simplified.
Instead of “*” (dereference) and “.”, the operator “–>” is provided:
vector_t * x = new vector_t;

x->size = 10;
x->data = new real_t[x->size];

cout << (*x).size << endl; // alternative

R. Kriemann, »C++ for Scientific Computing« 125/316

Advanced Datatypes

Access Records
In case of a reference, e.g. vector_t &, the standard access has to
be used, e.g. via “.”:
vector_t x;

x.size = 10;
x.coeffs = new real_t[x.size];

vector_t & y = x;

cout << y.size << endl;
cout << y.coeffs[5] << endl;

R. Kriemann, »C++ for Scientific Computing« 126/316

Advanced Datatypes

Records and Functions
Records can be supplied as normal function arguments, either as
call-by-value or call-by-reference:
double dot (const vector_t x, const vector_t y);
void fill (const real_t f, vector_t & y);
void add (const real_t f, const vector_t & x,

vector_t & y);

When using call-by-value, a copy of the complete record is actually
created. For large records, this can be a significant overhead:
struct quadrule_t {

real_t points[100];
real_t weights[100];

};

double quadrature (const quadrule_t rule,
double (* func) (const double x));

R. Kriemann, »C++ for Scientific Computing« 127/316

Advanced Datatypes

Records and Functions
In such cases, call-by-reference with a const argument is necessary
to avoid this overhead:
double quadrature (const quadrule_t & rule,

double (* func) (const double x));

Here, only a single pointer is supplied to the function instead of 200
real_t values.

R. Kriemann, »C++ for Scientific Computing« 128/316

Advanced Datatypes

Application: BLAS (Version 2)
Modified BLAS function set using the previous record types for
vectors and matrices:
inline vector_t *
vector_init (const unsigned i)
{

vector_t * v = new vector_t;

v->size = i;
v->coeffs = new real_t[i];

for (unsigned i = 0; i < n; i++) // RAII
v->coeffs[i] = 0.0;

return v;
}

inline matrix_t *
matrix_init (const unsigned n, const unsigned m)
{ ... }

R. Kriemann, »C++ for Scientific Computing« 129/316

Advanced Datatypes

Application: BLAS (Version 2)

// vector functions
void fill (const double f, vector_t & x);
void scale (const double f, vector_t & x);

void add (const double f, const vector_t & x, vector_t & y)
{

for (unsigned i = 0; i < n; i++)
y.coeffs[i] += f * x.coeffs[i];

}

double dot (const vector_t & x, const vector_t & y);
inline double norm2 (const vector_t & x)
{ return sqrt(dot(x, x)); }

// matrix functions
void fill (const double f, matrix_t & M);
void scale (const double f, matrix_t & M);
void add (const double f, const matrix_t & A, matrix_t & M);

inline double
normF (double & M)
{ ... } // can not use vector based norm2!

R. Kriemann, »C++ for Scientific Computing« 130/316

Advanced Datatypes

Application: BLAS (Version 2)

void
mul_vec (const double alpha,

const matrix_t & M,
const vector_t & x,
vector_t & y)

{
for (unsigned i = 0; i < M.nrows; i++)
{

double f = 0.0;

for (unsigned j = 0; j < M.ncolumns; j++)
f += get_entry(M, i, j) * x.coeffs[j];

y.coeffs[i] += alpha * f;
}

}

void
mul_mat (const double alpha,

const matrix_t & A,
const matrix_t & B,
matrix_t & C);

R. Kriemann, »C++ for Scientific Computing« 131/316

Advanced Datatypes

Application: BLAS (Version 2)

matrix_t * M = matrix_init(10, 10);
vector_t * x = vector_init(10);
vector_t * y = vector_init(10);

fill(1.0, x);
fill(0.0, y);

... // fill matrix M

cout << normF(M) << endl;

mul_vec(-1.0, M, x, y);

R. Kriemann, »C++ for Scientific Computing« 132/316

Advanced Datatypes

Recursive Records
Records can have variables of it’s own type in the form of a pointer.
That way, recursive structures can be defined, e.g. a binary tree:
struct node_t {

int val;
node_t * son1, * son2;

};

node_t root;
node_t son1, son2;
node_t son11, son12, son21, son22;

root.son1 = & son1; root.son2 = & son2;
son1.son1 = & son11; son1.son2 = & son12;
son2.son1 = & son21; son2.son2 = & son22;

The above code yields: root

son1

son11 son12

son2

son21 son22

R. Kriemann, »C++ for Scientific Computing« 133/316

Advanced Datatypes

Recursive Records
Insert new value in binary tree:
void
insert (const node_t & root, const int val)
{

i f (val < root.val)
{

i f (root.son1 != NULL)
insert(* root.son1, val);

else
{

root.son1 = new node_t;
root.son1->val = val;
root.son1->son1 = NULL;
root.son1->son2 = NULL;

}
}
else
{

i f (root.son2 != NULL)
insert(* root.son2, val);

else
...

} }

R. Kriemann, »C++ for Scientific Computing« 134/316

Advanced Datatypes

Recursive Records
Example for insertion:
int values[7] = { 5, 3, 1, 4, 8, 6, 9 };
node_t root;

root.son1 = root.son2 = NULL;
root.val = values[0];

for (int i = 1; i < 7; i++)
insert(root, values[i]);

yields:
5

3

1 4

8

6 9

R. Kriemann, »C++ for Scientific Computing« 135/316

Advanced Datatypes

Recursive Records
Looking for value in binary tree:
bool
is_in (const node_t & root, const int val)
{

i f (root.val == val)
return true;

return is_in(* root.son1, val) ||
is_in(* root.son2, val);

}

...

cout << is_in(root, 6) endl; // yields true
cout << is_in(root, 7) endl; // yields false

R. Kriemann, »C++ for Scientific Computing« 136/316

Advanced Datatypes

Arrays of Records
Like any other datatype, records can also be allocated in the form of
an array:
struct coord_t {

real_t x, y, z;
};

coord_t coordinates[10];

for fixed sized array or
coord_t * coordinates = new coord_t[10];

using dynamic memory management.

R. Kriemann, »C++ for Scientific Computing« 137/316

Advanced Datatypes

Arrays of Records
The access to record variables then comes after addressing the array
entry:
for (unsigned i = 0; i < 10; i++)
{

coordinates[i].x = cos(real_t(i) * 36.0 * pi / 180.0);
coordinates[i].y = sin(real_t(i) * 36.0 * pi / 180.0);
coordinates[i].z = real_t(i) / 10.0;

}

If instead, an array of pointers to a record is allocated:
coord_t ** coordinates = new coord_t*[10];

for (int i = 0; i < 10; i++)
coordinates[i] = new coord_t;

the access if performed with the arrow operator –>:
coordinates[i]->x = cos(real_t(i) * 36.0 * pi / 180.0);

R. Kriemann, »C++ for Scientific Computing« 138/316

Advanced Datatypes

Record Application: Sparse Matrices
We only want to store nonzero entries in a sparse matrix. For this,
each entry is stored in a record type, containing the column index
and the coefficient:
struct entry_t {

unsigned column; // column of the entry
real_t coeff; // actual coefficient
entry_t * next; // next entry in row

};

All entries in a row are stored in a list, provided by the next pointer
in an entry type. A NULL value of next signals the end of the list.

column

coeff

next

column

coeff

next

column

coeff

next

entry_t

NULL

R. Kriemann, »C++ for Scientific Computing« 139/316

Advanced Datatypes

Record Application: Sparse Matrices
A sparse matrix is then allocated as an array of entry lists per row:
struct sparsematrix_t {

unsigned nrows, ncolumns;
entry_t * entries;

};

sparsematrix_t

nrows

ncolumns

entries

entry_t

entry_t

entry_t

entry_t entry_t

entry_tentry_t

entry_t entry_t

R. Kriemann, »C++ for Scientific Computing« 140/316

Advanced Datatypes

Record Application: Sparse Matrices
As an example, consider the matrix

1 3
2 −1

−4 −1 1
1 3

0

1

2

3

row

sparsematrix_t S;
entry_t * entry;

S.nrows = 4; S.ncolumns = 4;
S.entries = new entry_t[4];

// first row
entry = & S.entry[0];
entry->column = 0; entry->coeff = 1.0; entry->next = new entry_t;

entry = entry->next;
entry->column = 2; entry->coeff = 3.0; entry->next = NULL;
...

R. Kriemann, »C++ for Scientific Computing« 141/316

Advanced Datatypes

Record Application: Sparse Matrices
As an example, consider the matrix

1 3
2 −1

−4 −1 1
1 3

0

1

2

3

1

row

0

sparsematrix_t S;
entry_t * entry;

S.nrows = 4; S.ncolumns = 4;
S.entries = new entry_t[4];

// first row
entry = & S.entry[0];
entry->column = 0; entry->coeff = 1.0; entry->next = new entry_t;

entry = entry->next;
entry->column = 2; entry->coeff = 3.0; entry->next = NULL;
...

R. Kriemann, »C++ for Scientific Computing« 141/316

Advanced Datatypes

Record Application: Sparse Matrices
As an example, consider the matrix

1 3
2 −1

−4 −1 1
1 3

0

1

2

3

1 3

row

NULL
0 2

sparsematrix_t S;
entry_t * entry;

S.nrows = 4; S.ncolumns = 4;
S.entries = new entry_t[4];

// first row
entry = & S.entry[0];
entry->column = 0; entry->coeff = 1.0; entry->next = new entry_t;

entry = entry->next;
entry->column = 2; entry->coeff = 3.0; entry->next = NULL;
...

R. Kriemann, »C++ for Scientific Computing« 141/316

Advanced Datatypes

Record Application: Sparse Matrices
As an example, consider the matrix

1 3
2 −1

−4 −1 1
1 3

0

1

2

3

1 3

2 −1

−4 −1 1

1 4

row

NULL

NULL

NULL

NULL

0

1

0

0 3

1

3

2

2

sparsematrix_t S;
entry_t * entry;

S.nrows = 4; S.ncolumns = 4;
S.entries = new entry_t[4];

// first row
entry = & S.entry[0];
entry->column = 0; entry->coeff = 1.0; entry->next = new entry_t;

entry = entry->next;
entry->column = 2; entry->coeff = 3.0; entry->next = NULL;
...

R. Kriemann, »C++ for Scientific Computing« 141/316

Advanced Datatypes

Record Application: Sparse Matrices
Matrix-Vector multiplication:
void
mul_vec (const real_t alpha, const sparsematrix_t & S,

const vector_t x, vector_t & y)
{

for (unsigned i = 0; i < S.nrows; i++)
{

real_t f = 0.0;
entry_t * entry = & S.entries[i];

while (entry != NULL)
{

f += entry->coeff * x[entry->column];
entry = entry->next;

}

y[i] += alpha * f;
}

}

R. Kriemann, »C++ for Scientific Computing« 142/316

Advanced Datatypes

Record Application: Sparse Matrices (Version 2)
We can store sparse matrices even more memory efficient, without
pointers. For this, we’ll use three arrays:

• colind: stores column indices for all entries, sorted by row,
• coeffs: stores all coefficients in same order as in colind and
• rowptr: stores at rowind[i] the position of the first values

corresponding to row i in the arrays colind and coeffs. The
last field, contains the number of nonzero entries.

This format is known as the compressed row storage format.
struct crsmatrix_t {

unsigned nrows, ncolumns;
unsigned * rowptr;
unsigned * colind;
real_t * coeffs;

};

R. Kriemann, »C++ for Scientific Computing« 143/316

Advanced Datatypes

Record Application: Sparse Matrices (Version 2)
For the matrix

1 3
2 −1

−4 −1 1
1 3

the corresponding source code is:
crsmatrix_t S;
unsigned rowptr[] = { 0, 2, 4, 7, 9 };
unsigned colind[] = { 0, 2, 1, 3, 0, 1, 2, 0, 3 };
real_t coeffs[] = { 1, 3, 2, -1, -4, -1, 1, 1, 3 };

S.nrows = 4; S.ncolumns = 4;
S.rowptr = rowptr;
S.colind = colind;
S.coeffs = coeffs;

R. Kriemann, »C++ for Scientific Computing« 144/316

Advanced Datatypes

Record Application: Sparse Matrices (Version 2)
Matrix-Vector multiplication:
void
mul_vec (const real_t alpha, const crsmatrix_t & S,

const vector_t x, vector_t & y)
{

for (unsigned row = 0; row < S.nrows; row++)
{

real_t f = 0.0;
const unsigned lb = S.rowptr[row];
const unsigned ub = S.rowptr[row+1];

for (unsigned j = lb; j < ub; j++)
f += S.coeffs[j] * x[S.colind[j]];

y[i] += alpha * f;
}

}

R. Kriemann, »C++ for Scientific Computing« 145/316

Advanced Datatypes

Enumerations
A special datatype is available to define enumerations:

enum 〈enum name〉 {
〈name 1〉, 〈name 2〉, . . ., 〈name n〉

};

Example:
enum matrix_type_t { unsymmetric, symmetric, hermitian };

matrix_type_t t;

i f (t == symmetric) { ... }

Enumerations are handled as integer datatypes by C++. By default,
the members of an enumeration are numbered from 0 to n− 1, e.g.
<name 1>= 0, <name 2>= 1, etc..

R. Kriemann, »C++ for Scientific Computing« 146/316

Advanced Datatypes

Enumerations
One can also define the value of the enumeration members explicitly:
enum matrix_size_t { small = 10, middle = 1000, large = 1000000 };

i f (nrows < small) { ... }
else i f (nrows < middle) { ... }
else i f (nrows < large) { ... }
else { ... }

Since enumerations are equivalent to integer types, they can also be
used in switch statements:
switch (type)
{
case symmetric: ...; break;
case hermitian: ...; break;

case unsymmetric:
default: ...;
}

R. Kriemann, »C++ for Scientific Computing« 147/316

Advanced Datatypes

Unions
A union is a special record datatype where all variables share the
same memory, i.e. changing one variable changes all other variables.

union 〈union name〉 {
〈datatype 1〉 〈name 1〉;
...
〈datatype n〉 〈name n〉;

};

Example:
union utype_t {

int n1;
int n2;
float f;

};

utype_t u;

u.n1 = 2;
cout << u.n2 << endl; // yields 2
cout << u.f << endl; // ???

R. Kriemann, »C++ for Scientific Computing« 148/316

Advanced Datatypes

Unions
Unions can also be used inside records:
enum smat_type_t { ptr_based, crs_based };

struct general_sparse_matrix_t {
smat_type_t type;

union {
sparsematrix_t ptrmat;
crsmatrix_t crsmat;

} matrix;
};

general_sparse_matrix_t S;

S.type = ptr_based;
S.matrix.ptrmat.nrows = 10;

Remark
Typical usage for unions: save memory for different
representations.

R. Kriemann, »C++ for Scientific Computing« 149/316

Advanced Datatypes

Unions
The name matrix of the union can be omitted. The access is then
as if it were a direct member of the struct.
enum smat_type_t { ptr_based, crs_based };

struct general_sparse_matrix_t {
smat_type_t type;

union {
sparsematrix_t ptrmat;
crsmatrix_t crsmat;

};
};

general_sparse_matrix_t S;

S.type = ptr_based;
S.ptrmat.nrows = 10;

R. Kriemann, »C++ for Scientific Computing« 150/316

Modules and Namespaces

R. Kriemann, »C++ for Scientific Computing« 151/316

Modules and Namespaces

Header Files
Up to now, all source code was placed into one file. For reasonable
programs, this is not desirable, especially if functions are reused by
different programs.
Unfortunately, C++ has no real module system like, e.g. Pascal or
Java, to group similar functions or types. Instead, header files are
used to make C++ objects known to different source files.
As you remember, functions can be used if they were previously
declared or implemented. By separating declaration and
implementation into header and source file:
// header file: f.hh

void f (int n, double f);

// source file: f.cc

void f (int n, double f)
{ ... }

the function can be reused by just including the header file.

R. Kriemann, »C++ for Scientific Computing« 152/316

Modules and Namespaces

Header Files
Including another file into the current source code is performed by
the include directive:

#include “filename” or
#include <filename>

The first version is usually used for files in the same project, whereas
the second version is for files from other projects, e.g. the operating
system or the C++ compiler.
#include "f.hh" // contains decl. of "f"

int main ()
{

f(42, 3.1415926);
}

R. Kriemann, »C++ for Scientific Computing« 153/316

Modules and Namespaces

Header Files

Remark
By convention, the filename suffix of the header file should
be either “h” (like in C), “H”, “hh” or “hpp”.

R. Kriemann, »C++ for Scientific Computing« 154/316

Modules and Namespaces

C++ Library
The C++ compiler comes with a set of standard include files
containing declarations of many functions:
cstdlib: standard C functions, e.g.

• exit: stop program,
• atoi and atof: string to int and double conversion,
• qsort: sort arrays,
• malloc and free: C-style dynamic memory

management,
cmath: mathematical functions, e.g.

• sqrt: square root,
• abs: absolute value,
• sin and cos,
• log: natural logarithm

R. Kriemann, »C++ for Scientific Computing« 155/316

Modules and Namespaces

C++ Library
cstdio: C-style IO functions, e.g.

• printf: print variables to standard output,
• fopen, fclose, fread and fwrite: file IO

cstring: string functions, e.g.
• strlen: string length,
• strcat: string concatenation,
• strcmp: string comparison,
• strcpy: string copy

cctype: character tests, e.g.
• isdigit: test for digit,
• islower: test for lower case,
• isspace: test for white-space

etc.: cassert, cerrno, cinttypes, climits, ctime.

R. Kriemann, »C++ for Scientific Computing« 156/316

Modules and Namespaces

C++ Library
Specific C++ functionality usually comes in the form of the standard
template library. It is implemented via classes (see later) and
provided by the following header files:

iostream: file input/output functions and classes,
vector: dynamic containers similar to arrays,

valarray: similar to vector but better suited for numerics,
limits: functions for determining type limits, e.g. minimal or

maximal values,
map: associative array, e.g. indices are arbitrary types,

list: provides standard list and iterators,
complex: provides complex datatype,

etc.
The specific classes and their usage will be discussed later.

R. Kriemann, »C++ for Scientific Computing« 157/316

Modules and Namespaces

Libraries without Headers (LAPACK)
LAPACK is written in Fortran and no header files exist for C++.
Therefore, we will have to write them ourselves. Consider
SUBROUTINE DGESVD(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT,
$ WORK, LWORK, INFO)

CHARACTER JOBU, JOBVT
INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N
DOUBLEPRECISION A(LDA, *), S(*), U(LDU, *),
$ VT(LDVT, *), WORK(*)

To define a C++ function corresponding to the above Fortran
function the datatypes have to be mapped to C++ types. In Fortran,
every variable is provided as a pointer, hence:

CHARACTER → char *,
INTEGER → int * and
DOUBLE PRECISION → double *.

R. Kriemann, »C++ for Scientific Computing« 158/316

Modules and Namespaces

Libraries without Headers (LAPACK)
Fortran function names are in lower case and end with and
underscore ’_’, when seen from C or C++. Hence, the name of the
above Fortran function is dgesvd_:
void dgesvd_ (char * jobu, char * jobv, int * n, int * m,

double * A, int * lda, double * S, double * U,
int * ldu, double * V, int * ldv, double * work,
int * lwork, int * info);

Furthermore, there is a difference between C and C++ functions.
Fortran only provides C-style functions, whereas the above is a C++
function. To tell the compiler, that a C-style function should be
declared, the extern “C” instruction is provided:
extern "C" {
void dgesvd_ (char * jobu, char * jobv, int * n, int * m,

double * A, int * lda, double * S, double * U,
int * ldu, double * V, int * ldv, double * work,
int * lwork, int * info);

}

R. Kriemann, »C++ for Scientific Computing« 159/316

Modules and Namespaces

Libraries without Headers (LAPACK)
Afterwards, the function dgesvd_ can be used like any other C++
function. To compute the SVD M = U · S · V T of a matrix M , the
code looks like:
int n = 10;
double * M = new double[n*n];
char jobu = ’O’; // overwrite M with U
char jobv = ’S’; // store V^T in VT
int info = 0;
int lwork = 10*n*n;
double * work = new double[work]; // workspace for dgesvd
double * S = new double[n];
double * VT = new double[n*n];

... // fill M

dgesvd_(& jobu, & jobv, & n, & n, M, & n, S, M, & n, V, & ldv,
work, & lwork, & info);

R. Kriemann, »C++ for Scientific Computing« 160/316

Modules and Namespaces

Header File Recursion
The include directive can be seen as simple text replacement: the
directive is replaced by the content of the corresponding file.
#include "f.hh"

int main ()
{

f(42, 3.1415926);
}

void f (int n, double f);

int main ()
{

f(42, 3.1415926);
}

This might lead to infinite loops, if you have recursive include
directives in different files, e.g. “file1.hh” includes “file2.hh”, which
by itself includes “file1.hh”.
// FILE: file1.hh

#include "file2.hh"

...

// FILE: file2.hh

#include "file1.hh"

...

R. Kriemann, »C++ for Scientific Computing« 161/316

Modules and Namespaces

Header File Encapsulation
To prevent infinite loops, two other directives are provided:

#ifndef 〈NAME〉
...
#endif

tests, if the symbol 〈NAME〉 was previously defined by the directive
#define 〈NAME〉

If it was not defined, all source code between the ifndef directive
and the corresponding endif will be included by the C++ compiler.
Otherwise, the source code will be omitted.

Remark
It is recommended to name the symbol 〈NAME〉 after the
name of the header file.

R. Kriemann, »C++ for Scientific Computing« 162/316

Modules and Namespaces

Header File Encapsulation
Now, for the recursive example:
// FILE: file1.hh

#ifndef __FILE1_HH
#define __FILE1_HH

#include "file2.hh"

#endif

// FILE: file2.hh

#ifndef __FILE2_HH
#define __FILE2_HH

#include "file1.hh"

#endif

If “file1.hh” is included by a source file, the symbol “__FILE1_HH”
will be defined and the content of the header file included. Similar,
#include ‘‘file2.hh’’ will be replaced by the content of
“file2.hh”. If now again “file1.hh” should be included,
“__FILE1_HH” is already defined and the content of “file1.hh” is
omitted, stopping the recursion.

R. Kriemann, »C++ for Scientific Computing« 163/316

Modules and Namespaces

Header File Encapsulation

Coding Principle No. 19
Always encapsulate your header files by an
ifndef-define-endif construct.

R. Kriemann, »C++ for Scientific Computing« 164/316

Modules and Namespaces

Inline Functions
It is also possible to implement a function in a header file. In that
case, it has to be declared inline, because otherwise, the function is
defined in each source file, where the header is included. If you than
compile all source files together, you would have multiple instances
of the same function, which is not allowed.
#ifndef __SQUARE_HH
#define __SQUARE_HH

inline
double
square (const double x)
{

return x*x;
}

#endif

R. Kriemann, »C++ for Scientific Computing« 165/316

Modules and Namespaces

Variables
Beside functions, you can also declare variables in header files. For
non-const data, the declaration and definition has to be separated
to prevent multiple instances. In the header file, the variables have
to be declared with the keyword extern:
// header file: real.hh

#ifndef __REAL_HH
#define __REAL_HH

typedef double real_t;

const real_t PI = 3.1415926; // const: "extern" not needed
extern real_t eps;
extern int stepwidth;

#endif

R. Kriemann, »C++ for Scientific Computing« 166/316

Modules and Namespaces

Variables
The definition than has to be made in a source file:
// source file: real.cc

#include "real.hh" // for real_t

real_t eps = 1e-8;
int stepwidth = 1024;

Afterwards, every module including the corresponding headerfile has
access to the variables eps and stepwidth:
#include "real_t.hh"

int
main ()
{

eps = 1e-4;
cout << stepwidth << endl;

return 0;
}

R. Kriemann, »C++ for Scientific Computing« 167/316

Modules and Namespaces

Module Scope
If a function or variable is declared in a header file, it is globally
visible by all other parts of the program. It is in global scope.
For variables, that simplifies access, e.g. global variables do not
need to be supplied as function parameters. But it has a major
drawback: every function can change the variable, independent on
possible side effects.
Better approach: define a function for changing the variable. That
way, the access can be controlled:
// header
void
set_eps (const real_t aeps);

real_t
get_eps ();

// source
static real_t eps = 1e-8;

void
set_eps (const real_t aeps)
{

i f (aeps < 0.0) eps = 0.0;
else i f (aeps > 1.0) eps = 1.0;
else eps = aeps;

}

R. Kriemann, »C++ for Scientific Computing« 168/316

Modules and Namespaces

Module Scope
Therefore:
Coding Principle No. 20

Only if absolutely neccessary make non-const variables
global.

Remark
The static declaration of a variable or function in a source
file prevents other modules from using that variable or
function, respectively.

R. Kriemann, »C++ for Scientific Computing« 169/316

Modules and Namespaces

Namespaces
Following situation: we have written datatypes and functions for
dense matrices in a module, e.g.
struct matrix_t {

size_t nrows, ncolumns;
real_t * coeffs;

};

matrix_t * init (...);
void mul_vec (...);

and you want to join that with another module for sparse matrices:
struct matrix_t {

size_t nrows, ncolumns, nnzero;
size_t * rowptr, * colind;
real_t * coeffs;

};

matrix_t * init (...);
void mul_vec (...);

R. Kriemann, »C++ for Scientific Computing« 170/316

Modules and Namespaces

Namespaces
Problem: although functions with the same name are allowed, two
datatypes must not have the same name.
Solution 1: rename all occurences of matrix_t for sparse matrices,

and change all functions, or
Solution 2: put each type and function set into a different

namespace.
A namespace is a mechanism in C++ to group types, variables and
functions, thereby defining the scope of these objects, similar to a
block. Till now, all objects were in the global namespace.
Namespace definition:

namespace 〈namespace name〉 {
...

}

R. Kriemann, »C++ for Scientific Computing« 171/316

Modules and Namespaces

Namespaces
Applied to the two matrix modules from above:
namespace Dense {

struct matrix_t {
unsigned nrows, ncolumns;
real_t * coeffs;

};

matrix_t * init (...);
void mul_vec (...);

}

namespace Sparse {

struct matrix_t {
unsigned nrows, ncolumns, nnzero;
unsigned * rowptr, * colind;
real_t * coeffs;

};

matrix_t * init (...);
void mul_vec (...);

}

This defines two namespaces Dense and Sparse, each with a
definition of matrix_t and corresponding functions.

R. Kriemann, »C++ for Scientific Computing« 172/316

Modules and Namespaces

Namespace Access
The access to functions or types in a namespace is performed with
the namespace operator “::” :
Dense::matrix_t * D = Dense::init(10, 10);
Sparse::matrix_t * S = Sparse::init(10, 10, 28);

Dense::mul_vec(1.0, D, x, y);
Sparse::mul_vec(1.0, S, x, y);

R. Kriemann, »C++ for Scientific Computing« 173/316

Modules and Namespaces

Namespace Access
To make all objects in a namespace visible to the local namespace,
the keyword using is provided:
using namespace Dense;
using namespace Sparse;

Dense::matrix_t * D = init(10, 10); // call to Dense::init
Sparse::matrix_t * S = init(10, 10, 28); // call to Sparse::init

mul_vec(1.0, D, x, y); // call to Dense::mul_vec
mul_vec(1.0, S, x, y); // call to Sparse::mul_vec

Remark
Remember, that types must have different names. Hence,
the types for D and S have to be named with their
namespaces.

R. Kriemann, »C++ for Scientific Computing« 174/316

Modules and Namespaces

Namespace Access
Restrict the usage of using to source files and avoid using
directives in header files, because all modules including the header
would also include the corresponding using instruction:
// header file: vector.hh

#include "dense.hh"

using namespace Dense;

... // vector definitions

// source file: module.cc

#include "vector.hh"
#include "sparse.hh"

using namespace Sparse;

void f (matrix_t & M);

Here, matrix_t is ambiguous, e.g. either Dense::matrix_t or
Sparse::matrix_t.

R. Kriemann, »C++ for Scientific Computing« 175/316

Modules and Namespaces

Namespace Aliases
It is also possible to define an alias for a namespace, e.g. to
abbreviate it:
namespace De = Dense;
namespace Sp = Sparse;

De::matrix_t * D = De::init(10, 10);
Sp::matrix_t * S = Sp::init(10, 10, 28);

De::mul_vec(1.0, D, x, y);
Sp::mul_vec(1.0, S, x, y);

R. Kriemann, »C++ for Scientific Computing« 176/316

Modules and Namespaces

Nested Namespaces
Namespaces can also be nested and different parts of a namespace
can be defined in different modules:
namespace LinAlg {

namespace Dense {
...

}
}

namespace LinAlg {
namespace Sparse {

...
}

}

LinAlg::Dense::matrix_t * D = LinAlg::Dense::init(10, 10);
LinAlg::Sparse::matrix_t * S = LinAlg::Sparse::init(10, 10, 28);

LinAlg::Dense::mul_vec(1.0, D, x, y);
LinAlg::Sparse::mul_vec(1.0, S, x, y);

R. Kriemann, »C++ for Scientific Computing« 177/316

Modules and Namespaces

Anonymous Namespaces
Namespaces can also be defined without a name:
namespace {

void f ()
{

...
}

}

The C++ compiler will then automatically assign a unique, hidden
name for such a namespace. This name will be different in different
modules.
Functions in an anonymous namespace can be used without
specifying their namespace name:
namespace {

void f () { ... }
}

void g () { f(); }

R. Kriemann, »C++ for Scientific Computing« 178/316

Modules and Namespaces

Anonymous Namespaces
On the other hand, since the automatically assigned name is unique
per module, only functions in the same module as the anonymous
namespace can access the functions within:
// module 1

namespace {
void f () { ... }

}

void g ()
{

f(); // Ok: same module
}

// module 2

void h ()
{

f(); // Error: unknown
// function "f"

}

Such functions are therefore hidden for other modules and purely
local to the corresponding module.

R. Kriemann, »C++ for Scientific Computing« 179/316

Modules and Namespaces

Anonymous Namespaces

Remark
If an anonymous namespace is defined in a header file,
each module including the header would define a new,
local namespace!

Coding Principle No. 21
Put module local functions into an anonymous namespace.

This approach is different from the previous C-style version using
static functions and variables and should be preferred.

R. Kriemann, »C++ for Scientific Computing« 180/316

Modules and Namespaces

The std Namespace
All functions (and classes) of the C++ standard library, e.g. sqrt or
strcpy are part of the std namespace. Previous use always assumed
a corresponding using command:
using namespace std;

const real_t PI = 3.14159265358979323846;
const real_t sqrtPI = sqrt(PI);

cout << sqrtPI << endl;

is equivalent to
const real_t PI = 3.14159265358979323846;
const real_t sqrtPI = std::sqrt(PI);

std::cout << sqrtPI << std::endl;

R. Kriemann, »C++ for Scientific Computing« 181/316

Classes

R. Kriemann, »C++ for Scientific Computing« 182/316

Classes

Records with Functions
Records were previously introduced only as a way to group data. In
C++, records can also be associated with functions.
struct vector_t {

unsigned size;
real_t * coeffs;

void init (const unsigned n);
void fill (const real_t f);
void scale (const real_t f);

};

For the implementation of these functions, the function name is
prefixed by the record name:
void vector_t::init (const uint n)
{

...
}

R. Kriemann, »C++ for Scientific Computing« 183/316

Classes

Records with Functions
A record function is called specifically for an instance of a record,
using the same dot operator ’.’ as for record variables:
int main ()
{

vector_t x;

x.init(10);
x.fill(1.0);
x.scale(5.0);

return 0;
}

R. Kriemann, »C++ for Scientific Computing« 184/316

Classes

Record Function Implementation
Inside a record function, one has implicit access to all record
variables of the specific record object, for which the function was
called. Therefore, the following two functions are equivalent:
void
vector_t::init (const uint n)
{

size = n;
coeffs = new real_t[n];

}

...

x.init(10);

void
init (vector_t * x,

const uint n)
{

x->size = n;
x->coeffs = new real_t[n];

}

...

init(x, 10);

R. Kriemann, »C++ for Scientific Computing« 185/316

Classes

Record Function Implementation
A pointer to the corresponding record object is actually available in
C++. It is called this. Hence, one can also write:
void vector_t::init (const uint n)
{

this->size = n;
this->coeffs = new real_t[n];

}

Record member functions can also be implemented in the definition
of the struct. They are then automatically declared as inline
functions:
struct vector_t {

...
void init (const unsigned n) // inline function
{

size = n;
coeffs = new real_t[n];

}
...

};

R. Kriemann, »C++ for Scientific Computing« 186/316

Classes

Records: const functions
Member functions not changing the record data should be defined
as const functions:
struct vector_t {

...
void scale (const real_t f);
real_t norm2 () const;
...

};

When calling record functions for const objects, e.g.
const vector_t x(10);

only such const functions are allowed to be called, since all
non-const functions potential change the object:
cout << x.norm2() << endl; // Ok: vector_t::norm2 is const
x.scale(2); // ERROR: vector_t::scale is non-const

R. Kriemann, »C++ for Scientific Computing« 187/316

Classes

Records: Constructors and Destructors
There are special functions for each record:
constructors: functions automatically called when a record type is

instantiated, e.g. by new, and
destructor: a function automatically called when a record

variable is destroyed, e.g. by delete.
The name of a constructor function is identical to the name of the
record, whereas the name of the destructor is the record name
prefixed by ’˜’:
struct vector_t {

unsigned size;
real_t * coeffs;

vector_t (); // constructor 1
vector_t (const unsigned n); // constructor 2
~vector_t (); // destructor

};

R. Kriemann, »C++ for Scientific Computing« 188/316

Classes

Records: Constructors and Destructors
By definition, constructors should create necessary resources for the
object, whereas destructors should free all record object resources:
vector_t::vector_t ()
{

size = 0;
coeffs = NULL;

}

vector_t::vector_t (const uint n)
{

size = n;
coeffs = new real_t[n];

}

vector_t::~vector_t ()
{

delete[] coeffs;
}

Remark
Constructors and the destructor have no return type.
Furthermore, destructors must not have function
arguments.

R. Kriemann, »C++ for Scientific Computing« 189/316

Classes

Records: Constructors and Destructors
Example 1: instantiated and destroyed explicitly by new and delete:
vector_t * x = new vector_t(); // calling constructor 1
vector_t * y = new vector_t(10); // calling constructor 2

y->fill(1.0);

delete x; // calling destructor

Remark
If the constructor has no arguments, the corresponding
parentheses can be omitted:

vector_t * x = new vector_t; // calling constructor 1

R. Kriemann, »C++ for Scientific Computing« 190/316

Classes

Records: Constructors and Destructors
Example 2: instantiated and destroyed implicitly by block scope:
{

vector_t x; // calling constructor 1
vector_t y(10); // calling constructor 2

y.fill(1.0);
} // destructor called automatically

Here, the record objects are not pointers. When leaving the block,
the destructors of all record objects are called automatically!
Thereby, it is ensured, that all resources are released.

R. Kriemann, »C++ for Scientific Computing« 191/316

Classes

Records: Special Constructors
By default, each record type has two constructors already
implemented by the C++ compiler: the default constructor and the
copy constructor.
The default constructor is a constructor without arguments, e.g.
constructor 1 in the previous example. The copy constructor is a
constructor with one argument being a constant reference to an
object of the same type as the record itself:
struct vector_t {

...
vector_t (const vector_t & x); // copy constructor
...

};

This is used for
vector_t x(10);
vector_t y(x); // call copy constructor
vector_t z = y; // usually converted to z(y)

R. Kriemann, »C++ for Scientific Computing« 192/316

Classes

Records: Special Constructors
The default constructor implemented by the C++ compiler does
nothing, e.g. it does not initialise the member variables. Hence,
without a user implemented default constructor, the values of the
member variables are random (ref. Coding Principle No. 3).
The C++ generated copy constructor simply copies the data in each
member variable of the record:
vector_t * x = new vector_t(10);
vector_t * y = new vector_t(& x); // now: x.coeffs == y.coeffs,

// e.g. equal pointers

Here, changing y also changes x:
x->coeffs[5] = 2; // also changes y.coeffs[2]
y->coeffs[3] = 4; // also changes x.coeffs[3]

R. Kriemann, »C++ for Scientific Computing« 193/316

Classes

Records: Special Constructors
For vectors, instead of the pointers, the content of the array should
be copied:
vector_t::vector_t (const vector_t & v)
{

size = v.size;
coeffs = new real_t[size];

for (uint i = 0; i < size; i++) coeffs[i] = v.coeffs[i];
}

Now, the instructions
vector_t * x = new vector_t(10);
vector_t * y = new vector_t(& x);

x->coeffs[5] = 2;
y->coeffs[3] = 4;

only effect either x or y, not both.

R. Kriemann, »C++ for Scientific Computing« 194/316

Classes

Records: Special Constructors
To sum this up:

Coding Principle No. 22
Always make sure, that the C++ generated default and
copy constructors behave as expected. If in doubt:
implement constructors by yourself.

R. Kriemann, »C++ for Scientific Computing« 195/316

Classes

Records: Visibility
All member variables and functions of a record were visible and
accessible from any other function or datatype in C++. This makes
illegal changes to the data in a record possible, e.g. change the size
variable of vector_t without also changing the coeffs variable.
To prevent this behaviour, one can change the visibility of variables
and functions using one of the following keywords:

public: variables or functions can be accessed without
restrictions,

protected: variables or functions can only be accessed by member
functions of the record type or by derived records (see
later),

private: variables or functions can only be accessed by member
functions of the record type.

R. Kriemann, »C++ for Scientific Computing« 196/316

Classes

Records: Visibility
Example 1:
struct vector_t {
private: // all following variables and functions

size_t size; // are private
real_t * coeffs;

public: // all following variables and functions
// are public

vector_t (const size_t n);
...

size_t get_size () const { return size; }
};

...

{
vector_t x(10);

cout << x.size << endl; // ERROR: <size> is private
cout << x.get_size() << endl; // Ok: <get_size> is public

}

R. Kriemann, »C++ for Scientific Computing« 197/316

Classes

Records: Visibility
Example 2:
struct vector_t {
private:

size_t size;
real_t * coeffs;

public:

...

protected:
void init (const size_t n)
{

size = n; // Ok: <size> is visible to member functions
coeffs = new real_t[n];

}
};

{
vector_t x(10);

x.init(20); // ERROR: <init> is protected
}

R. Kriemann, »C++ for Scientific Computing« 198/316

Classes

Records: Visibility
Illegal states of member variables can be prevented by making them
private and allowing modifications only via public member
functions:
struct vector_t {
private:

size_t size;
real_t * coeffs;

public:
...
size_t get_size () const { return size; }
void set_size (const size_t n) { init(n); }
...

};

Coding Principle No. 23
Make all member variables of a record private and allow
read-/write-access only via member functions.

R. Kriemann, »C++ for Scientific Computing« 199/316

Classes

Records: Operator Overloading
In C++, operators, e.g. +, *, = or [·], can be defined for record
datatypes to simplify access or to ensure correct behaviour.
Depending on the operator, it can be defined inside or outside the
record definition, e.g. operators changing the object like = or +=
in the record definition and binary operators working on two objects
typically outside the record.
In terms of syntax, operator functions are treated like any other
function. The name of the operator is defined by

operator 〈operator name〉
e.g.

operator =
operator +
operator *
operator []

R. Kriemann, »C++ for Scientific Computing« 200/316

Classes

Records: Operator Overloading (Example)
struct vector_t {

...
// provide index operator for vectors
real_t operator [] (const size_t i) { return coeffs[i]; }

// arithmetics
vector_t & operator += (const vector_t & v)
{

for (size_t i = 0; i < size; i++) coeffs[i] += v.coeffs[i];
return *this;

}
vector_t & operator -= (const vector_t & v) { ... }
vector_t & operator *= (const real_t f)
{

for (size_t i = 0; i < size; i++) coeffs[i] *= f;
return *this;

}
...

};

{ ...
x += y;
y *= 2.0;

}

R. Kriemann, »C++ for Scientific Computing« 201/316

Classes

Records: Operator Overloading
Be very careful when overloading the standard arithmetic operators,
e.g. + or *, since that can lead to very inefficient code:
// vector addition
vector_t operator + (const vector_t & v1, const vector_t & v2)
{

vector_t t(v1);
return (t += v2);

}

Here, a temporary object t has to be created. Furthermore, usually
another temporary object is created by the compiler since the
lifetime of t ends when returning from the function. Each of these
temporary objects needs memory and performs a copy operation.
Hence, the addition is very inefficient.

Coding Principle No. 24
Only overload operators if necessary and reasonable.

R. Kriemann, »C++ for Scientific Computing« 202/316

Classes

Records: Special Operators
The analog to the copy constructor is the copy operator ’=’, e.g.
used in
x = y;

It is also generated by the C++ compiler by default, simply copying
the individual member variables of the record. Thereby, the same
problems occur, e.g. copying pointers instead of arrays.
Coding principle for copy operators (see Coding Principle No. 22):

Coding Principle No. 25
Always make sure, that the C++ generated copy operator
behaves as expected. If in doubt: implement operator by
yourself.

R. Kriemann, »C++ for Scientific Computing« 203/316

Classes

Records: Special Operators
Copy operator for vectors:
struct vector_t {

...
vector_t & operator = (const vector_t & v)
{

init(v.size);

for (uint i = 0; i < size; i++) coeffs[i] = v.coeffs[i];

return *this;
}
...

};

Now, when assigning record objects to each other, e.g.
x = y;

the user implemented copy operator is used, ensuring correctness.

R. Kriemann, »C++ for Scientific Computing« 204/316

Classes

Records: Special Operators
The copy operator also allows a simplified copy constructor:
vector_t::vector_t (const vector_t & v)
{

*this = v;
}

R. Kriemann, »C++ for Scientific Computing« 205/316

Classes

Classes
Records provide all mechanisms for object-oriented programming.
What about classes?
C++ also provides a class type, e.g.

class 〈class name〉 {
...

};

Classes in C++ are identical to records, except for one little
difference: if the visibility specifiers, e.g. public, protected and
private, are missing, by default all member variables and functions
are private in a class and public in a record.
Therefore, it is up to you, which form you prefer: classes or records.
One possible rule: for simple records without functions use a struct,
otherwise use a class. But remember Coding Principle No. 22,
Coding Principle No. 25 and Coding Principle No. 3 (RAII).

R. Kriemann, »C++ for Scientific Computing« 206/316

Classes

Application: BLAS (Version 3)
Vector type:
class vector_t {
private:

size_t size;
real_t * coeffs;

public:
vector_t (const size_t n = 0);
vector_t (const vector_t & x);
~vector_t ();

size_t get_size () const;

real_t operator [] (const size_t i) const;
real_t & operator [] (const size_t i);

void fill (const real_t f);
void scale (const real_t f);
void add (const real_t f, const vector_t & x);

vector_t & operator = (const vector_t & x);
};

R. Kriemann, »C++ for Scientific Computing« 207/316

Classes

Application: BLAS (Version 3)
Remarks to the vector class:

• The constructor
vector_t (const size_t n = 0);

also serves as a default constructor since it can be called
without an argument.

• The index operator
real_t & operator [] (const size_t i)
{

return coeffs[i];
}

provides write access to the coefficients since a reference to the
corresponding entry is returned. Therefore, it is defined
non-const.

R. Kriemann, »C++ for Scientific Computing« 208/316

Classes

Application: BLAS (Version 3)
Matrix type:
class matrix_t {
private:

size_t nrows, ncolumns;
real_t * coeffs;

public:
matrix_t (const size_t n, const size_t m);
matrix_t (const matrix_t & M);
~matrix_t ();

size_t get_nrows () const;
size_t get_ncolumns () const;

real_t operator [] (const size_t i, const size_t j) const;
real_t & operator [] (const size_t i, const size_t j);

void fill (const real_t f);
void scale (const real_t f);
void add (const real_t f, const matrix_t & M);

R. Kriemann, »C++ for Scientific Computing« 209/316

Classes

Application: BLAS (Version 3)

void mul_vec (const real_t alpha, const vector_t & x,
vector_t & y) const;

real_t normF () const;

matrix_t & operator = (const matrix_t & M);

private:
matrix_t ();

};

void
mul_mat (...);

Remarks:
• The private default constructor prevents accidental matrices of

dimension 0, since it can not be called.
• The function mul_mat is not part of the matrix class, since the

algorithm can not be connected with a specific matrix.
R. Kriemann, »C++ for Scientific Computing« 210/316

Classes

Application: BLAS (Version 3)

matrix_t * M = new matrix_t(10, 10);
vector_t * x = new vector_t(10);
vector_t * y = new vector_t(10);

x.fill(1.0);
y.fill(0.0);

...
M[3,4] = ... // fill matrix M
...

cout << M.normF() << endl;

M.mul_vec(-1.0, x, y);

delete x;
delete y;
delete M;

R. Kriemann, »C++ for Scientific Computing« 211/316

Generic Programming

R. Kriemann, »C++ for Scientific Computing« 212/316

Generic Programming

Generic Programming
Consider
int square (const int x) { return x*x; }
float square (const float x) { return x*x; }
double square (const double x) { return x*x; }

The same algorithm is implemented for different datatypes. For
more complicated algorithms, this potentially leads to a lot of
programming overhead. If one aspect of the algorithm should be
changed, all other implementations have to be changed as well.
A similar overhead is involved with record datatypes used with
multiple base types, e.g. lists or dynamic arrays. The record has to
be reprogrammed whenever a new type should be placed in the list
or array, respectively.
Alternative: write source code for the record or function once and
leave out the specific datatype to operate on. That is called generic
programming.

R. Kriemann, »C++ for Scientific Computing« 213/316

Generic Programming

Templates
C++ supports generic programming in the form of templates.
A template function is defined as

template < typename 〈name〉 >
〈return type〉 〈function name〉 (〈argument list〉)

〈function body〉

e.g.
template <typename T>
T square (const T f) { return f*f; }

If the C++ compiler detects the usage of a template function, e.g.
double sq2 = square(2.0);

it will automatically generate the corresponding function:
double square (const double f) { return f*f; }

R. Kriemann, »C++ for Scientific Computing« 214/316

Generic Programming

Templates
Similar defined are template record (or class) types:

template < typename 〈name〉 >
struct 〈record name〉 {

...
}

Example for a simple list:
template <typename T>
struct list {

T element;
list * next;

};

R. Kriemann, »C++ for Scientific Computing« 215/316

Generic Programming

Templates
Template datatypes are used by explicitly defining the corresponding
type to be used in the template. The syntax is:

〈record name〉< 〈type〉 >

For the list type, this looks as:
int main ()
{

list< int > ilist;
list< double > * dlist = new list< double >;

ilist.element = 2;
ilist.next = NULL;

dlist->element = 2.0;
dlist->next = NULL;

}

R. Kriemann, »C++ for Scientific Computing« 216/316

Generic Programming

Templates
The template type can be a template by itself:
int main ()
{

list< list< float > > fllist;

fllist.element.element = 2.0f;
fllist.element.next = NULL;
fllist.next = NULL;

}

Here, the list can be extended in two dimensions, either by the next
pointer or the element.next pointer.

R. Kriemann, »C++ for Scientific Computing« 217/316

Generic Programming

Templates
Template functions can also be explicitly typed using the same
syntax:
float sq2 = square< float >(2.0f);
double sq3 = square< double >(3.0);

This is necessary, if the compiler can not automatically determine
the type used for a template function:
template <typename T>
T min (const T a, const T b)
{

i f (a < b) return a;
else return b;

}

...

int n1 = 10;
unsigned n2 = 20;
int n3 = min(n1, n2); // ambiguous: int or unsigned?
int n4 = min<int>(n1, n2); // ok: int explictly chosen

R. Kriemann, »C++ for Scientific Computing« 218/316

Generic Programming

Templates
Since template functions or types are generated at compile time, the
full specification, e.g. function header and body, has to be available
whenever such a function is used. Therefore, template functions
must always be implemented in a header file.

Remark
If many template types and functions are used for many
different datatypes, this significantly can bloat the
resulting compiled program. Also, the compilation time
can be much higher.

R. Kriemann, »C++ for Scientific Computing« 219/316

Generic Programming

Templates: Example (CG iteration forAx = b)

template <typename T_MAT> void
cg (const T_MAT & A, vector_t & x, const vector_t & b)
{

vector_t r(b), p, a(x.get_size());

mul_vec(-1.0, A, x, r); // r = b - A x
p = r; // p = r

for (size_t it = 0; it < 1000; it++) {
real_t lambda;

a.fill(0.0);
mul_vec(1.0, A, p, a); // a = A p
lambda = dot(r, p) / dot(a, p); // lambda = <r,p>/<Ap,p>
x.add(lambda, p); // x = x + lambda p;
r.add(-lambda, a); // r = r - lambda a
p.scale(- dot(r, a) / dot(a, p));
p.add(1.0, r); // p = r - (<r,a> / <a,p>) p

i f (r.norm2() < 1e-10) // stop crit.: |r|_2 < 1e-10
break;

} }

R. Kriemann, »C++ for Scientific Computing« 220/316

Generic Programming

Templates: Example (CG iteration forAx = b)

Remark
Works for arbitrary matrix types, e.g. dense and sparse, as
long as mul_vec is implemented for each type:

Dense::matrix_t M(n, n);
vector_t x(n);
vector_t b(n);

cg(M, x, b);

Sparse::matrix_t S(n, n, nnonzero);

cg(S, x, b);

R. Kriemann, »C++ for Scientific Computing« 221/316

Generic Programming

Templates: Multiple Template Arguments
Template functions and datatypes are also possible with more than
one argument type:
template <typename T_MAT, typename T_VEC> void
cg (const T_MAT & A, T_VEC & x, const T_VEC & b)
{

...
}

R. Kriemann, »C++ for Scientific Computing« 222/316

Generic Programming

Templates: Value Templates
Previous templates were used to leave out the type to work on. One
can also predefine the type and leave out the specific value:
template <int N>
struct smallvector_t {

real_t coeffs[N]; // constant size array

smallvector_t ()
{

for (size_t i = 0; i < N; i++)
coeffs[i] = 0.0;

}

smallvector_t & operator += (const smallvector_t & v) { ... }
smallvector_t & operator -= (const smallvector_t & v) { ... }
smallvector_t & operator *= (const real_t f) { ... }

};

template <int N>
smallvector<N> operator + (const smallvector_t<N> & v1,

const smallvector_t<N> & v2) { ... }

R. Kriemann, »C++ for Scientific Computing« 223/316

Generic Programming

Templates: Value Templates

smallvector_t<3> x, y, z;

x += y;
y *= 2.0;

z = x -= z + y;

Remark
As long as N is small, e.g. ≤ 5, the arithmetic operators
are still very efficient.

R. Kriemann, »C++ for Scientific Computing« 224/316

Generic Programming

Templates: Conclusion
Templates are a very powerful tool to simplify programming.
Furthermore, they are Turing complete, i.e. you can program every
computable program by only using templates.
Unfortunately, templates are also quite complex and involve a
sginificant overhead in terms of programming, compilation time and
(possibly) program size. Therefore, it is suggested to use them
sparsely.

R. Kriemann, »C++ for Scientific Computing« 225/316

Error Handling

R. Kriemann, »C++ for Scientific Computing« 226/316

Error Handling

General Thoughts
Consider
vector_t x(10);
vector_t y(20);

y = x;

The copy operator of vector_t simply copies all elements up to the
size of the vector:
for (size_t i = 0; i < size; i++)

(*this)[i] = x[i];

but the argument x only has 10 elements. Hence, memory is
overwritten, which is not part of the vector.

R. Kriemann, »C++ for Scientific Computing« 227/316

Error Handling

General Thoughts
Another typical error involves NULL pointers:
bool is_in (const node_t & root, const int val)
{

i f (root.val == val) return true;
else return is_in(* root.son1, val) ||

is_in(* root.son2, val);
}

Here, the recursive call to is_in for the sons is only possible, if the
sons are not NULL, which is not tested.

R. Kriemann, »C++ for Scientific Computing« 228/316

Error Handling

General Thoughts
The following example for a LU factorisation of a dense matrix
shows another problem:
for (uint j = 0; j <= min(nrows,ncolumns); ++j)
{

i f (j < n-1)
scale(nrows-1-j, 1.0 / A[j, j], & A[j + 1, j]);

i f (j < mrc)
// rank-1 update
geru(nrows-1-j, ncolumns-1-j, -1.0,

& A[j + 1, j], 1,
& A[j, j + 1], n,
& A[j + 1, j + 1], n);

}

The division by the diagonal element is not guarded against division
by zero, which would result in INF numbers.

R. Kriemann, »C++ for Scientific Computing« 229/316

Error Handling

General Thoughts
Obviously, we need some protection against possible errors. Even
more important is, that errors are detected and reported.
For detecting errors:

Coding Principle No. 26
• Always check function arguments, especially pointers

for illegal values (pre condition of a function).
• If a critical situation is possible by an instruction,

check the operands of the instruction.
• Check, whether the results of a function are as

expected (function post condition).

R. Kriemann, »C++ for Scientific Computing« 230/316

Error Handling

General Thoughts
For reporting errors different strategies are possible:
by message: Detect the error and print a (detailed) message that a

problem occured, but otherwise continue the program.
This is usuable for non-critical errors.

by abort: Detect the error and abort the program, possibly with
a detailed description of the error. This behaviour is
acceptable for short running programs.

by exception: Detect the error and throw an exception and let the
programmer either catch the exception or not, in
which case the program is aborted.

R. Kriemann, »C++ for Scientific Computing« 231/316

Error Handling

Assertions
Assertions fall into the category “error handling by abort”. An
assertions is defined using the function assert defined in the
module cassert.
Remark

Assertions are also possible in C, therefore the filename
cassert.

The assert function expects a logical expression as it’s function
argument. If the expression is false, the program is terminated,
printing the definition of the failed assertion together with the file
name and line number, where the assertion failed.

R. Kriemann, »C++ for Scientific Computing« 232/316

Error Handling

Assertions
For the copy operator of vector_t this looks as:
#include <cassert>

struct vector_t {
...

vector_t & operator = (const vector_t & x)
{

assert(get_size() == x.get_size());

for (size_t i = 0; i < size; i++)
(*this)[i] = x[i];

}
}

Now, if x has a different size than the local vector, the application
will immediately abort.

R. Kriemann, »C++ for Scientific Computing« 233/316

Error Handling

Assertions and Optimisation
When using optimisation to translate the source code into machine
code, assertions are usually omitted. This is an advantage and a
disadvantage:

• one can put quite expensive tests into assertions, which are
only executed when running the program without optimisation,
e.g. in test mode,

• but the optimised program will not detect those errors.
Therefore, it should be used only if one can test all cases without
optimisation and simply want to have a fast program for such
known and tested cases.

R. Kriemann, »C++ for Scientific Computing« 234/316

Error Handling

Assertion Usage
The size of the logical expression in the assertion is not limited, but
large expressions do not give the programmer the information, he
seeks:
void
mul_mat (const real_t alpha, const matrix_t & A, const matrix_t & B,

matrix_t & C)
{

assert(A.get_nrows() == C.get_nrows() &&
B.get_ncolumns() == C.get_ncolumns() &&
A.get_ncolumns() == B.get_nrows());

...
}

Although the function will only be executed, if the prerequisite for
matrix multiplaction are fulfilled, in case of an error, the
programmer does not know, which matrix was wrong.

R. Kriemann, »C++ for Scientific Computing« 235/316

Error Handling

Assertion Usage
Alternatively the assertion can be split, resulting in more
information if some incompatible matrices are used:
void
mul_mat (const real_t alpha, const matrix_t & A, const matrix_t & B,

matrix_t & C)
{

assert(A.get_nrows() == C.get_nrows());
assert(B.get_ncolumns() == C.get_ncolumns());
assert(A.get_ncolumns() == B.get_nrows());

...
}

R. Kriemann, »C++ for Scientific Computing« 236/316

Error Handling

Assertion Conclusion
Assertions are suitable for

• non-critical programs or programs with a short runtime,
• for errors, which can be detected in a previous test mode of the

program.
Assertions are not suitable for

• programs which shall not terminate or have a very long
runtime,

• programs with many different input data.
Although not suitable for all programs:

Remark
Assertions are better than nothing!

R. Kriemann, »C++ for Scientific Computing« 237/316

Error Handling

By Return Value
In C, the error status of a function was typically reported by the
return value, e.g. if non-zero, an error occured (see main). This is
not encouraged:

• Since the return code of every function has to be tested, the
resulting source code is very complex:
i f (f1(...) != 0) { ... } // Error
else { ... } // Ok
i f (f2(...) != 0) { ... } // Error
else { ... } // Ok
i f (f3(...) != 0) { ... } // Error
else { ... } // Ok

• One can simply ignore the return value of called functions,
bypassing error handling.

• Local objects, e.g. records, can not be deleted if an error
occures and a return is instructed.

R. Kriemann, »C++ for Scientific Computing« 238/316

Error Handling

Exceptions
C++ allows to try to execute portions of the source code and catch
detected errors by special handlers. Furthermore, the error
information is supplied in the form of an arbitrary datatype, thereby
allowing to provide further information about the error. This
mechanism is called exception handling and the error objects (or the
errors) are exceptions.
The syntax for exception handling is:

try
〈block〉

catch (〈error type〉 〈error〉)
〈block〉

Here, 〈error type〉 can be any datatype and 〈error〉 is the
corresponding error variable.

R. Kriemann, »C++ for Scientific Computing« 239/316

Error Handling

Throwing Exceptions
Example:
vector_t x(10);
vector_t y(20);

try
{

y = x;
}
catch (VectorSizeErr & e)
{

... // handle error
}

Of course, one can not catch an error, if it is not thrown. C++
provides the keyword throw to generate an error object:
vector_t & operator = (const vector_t & x)
{

i f (get_size() == x.get_size())
throw VectorSizeErr;

...
}

R. Kriemann, »C++ for Scientific Computing« 240/316

Error Handling

Exception Types
The type of the exception can be defined according to the needs of
the programmer, no limitations are set. Example with a class:
class VectorSizeErr
{
public:

const char * what () const
{

return "vector sizes differ";
}

};

Here, only a simple information is provided about the type of the
error. The error handler could therefore simply print this
information:
try { y = x; }
catch (VectorSizeErr & e)
{

cout << e.what() << endl;
}

R. Kriemann, »C++ for Scientific Computing« 241/316

Error Handling

Exception Types
Alternatively, the error can be more described:
class VectorSizeErr
{

const char * err_function;

public:
VectorSizeErr (const char * err_fn)
{

err_function = err_fn;
}

const char * what () const { return "vector sizes differ"; }
const char * where () const { return err_function; }

};

R. Kriemann, »C++ for Scientific Computing« 242/316

Error Handling

Exception Types
Now, the function where the error occured is stored while throwing
the exception:
vector_t & operator = (const vector_t & x)
{

i f (get_size() == x.get_size())
throw VectorSizeErr("vector::operator =");

...
}

and the exception handler can use that information:
try { y = x; }
catch (VectorSizeErr & e)
{

cout << "in function "
<< e.where()
<< " : "
<< e.what() << endl;

}

R. Kriemann, »C++ for Scientific Computing« 243/316

Error Handling

Multiple Exception Handlers
C++ permits to implement multiple exception handlers for a single
try block:
try
{

y = x;
x[30] = 1.0; // throws ArrayBoundErr

}
catch (VectorSizeErr & e)
{

...
}
catch (ArrayBoundErr & e)
{

...
}

If no exception handler is implemented for a specific exception type,
it will be handled by the default handler implemented by C++. By
default, this handler aborts the program.

R. Kriemann, »C++ for Scientific Computing« 244/316

Error Handling

General Exception Handlers
To catch all exceptions with a single handler, the following construct
is allowed:
try
{

y = x;
x[30] = 1.0;

}
catch (...)
{

cout << "exception occured" << endl;
}

By specifying “...”, all exceptions are catched. Of course, no
further information is then available about the type of error.
The general exception handler can be combined with other handlers,
thereby providing a fallback in the case of an unexpected exception.

R. Kriemann, »C++ for Scientific Computing« 245/316

Error Handling

Exceptions and Functions
For a C++ function one can define the exception types the function
and all directly or indirectly called functions can throw by using

〈function header〉 throw(〈exception list〉);

e.g.:
void mul_mat (...) throw(MatrixSizeErr, ArrayBoundErr);

Here, mul_mat is expected to throw MatrixSizeErr or
ArrayBoundErr, which can be catched by a handler. All other
exceptions will cause the program to abort.
The exception list can also be empty:
void f (...) throw();

in which case the function is expected to not throw an exception at
all.

R. Kriemann, »C++ for Scientific Computing« 246/316

Error Handling

Predefined Exceptions
Some exceptions are already defined by the C++ library, e.g.

bad_alloc: thrown by new if no memory is left to serve the
allocation request

bad_exception: thrown, if no exception handler is found for a
previously thrown exception.

These exceptions are defined in the module exception of the std
namespace.

R. Kriemann, »C++ for Scientific Computing« 247/316

Error Handling

Rethrow an Exception
A catched exception can be thrown again by the exception handler,
thereby forwarding the handling of the error to another exception
handler:
try
{

...
}
catch (ArrayBoundErr & e)
{

...
throw; // rethrow exception

}

Remark
The instruction throw; is only allowed in an exception
handler.

R. Kriemann, »C++ for Scientific Computing« 248/316

Error Handling

Stack Unwinding
Suppose that an error occures inside a complicated recursive
function, which allocates many variables, e.g.
void f (...)
{

record1_t r1;
...
f(...);
...
record2_t r2;
...
f(...);
...

}

If the error is thrown in the form of an exception, all of these record
types will be automatically deallocated. This is known as stack
unwinding.
This mechanism ensures, that no memory is left allocated in the
case of an error.

R. Kriemann, »C++ for Scientific Computing« 249/316

Error Handling

Stack Unwinding

Remark
Unfortunately, this does not hold for objects allocated by
new. But that can be fixed (see later).

R. Kriemann, »C++ for Scientific Computing« 250/316

Error Handling

Exceptions: Conclusion
Exceptions a superior to all other form of error handling, e.g.

• they do not interfere with the normal algorithm like the usage
of return values,

• the program does not need to terminate as with assertions,
• specific handling can be implemented for specific errors,
• the cleanup of record objects is provided,
• etc.

Hence:
Coding Principle No. 27

Use exceptions for all error handling.

In the simplest case, implement the throw instructions for all errors
and wrap your main function in a try-catch construct.

R. Kriemann, »C++ for Scientific Computing« 251/316

Standard Template Library

R. Kriemann, »C++ for Scientific Computing« 252/316

Standard Template Library

C++ and STL
The standard library of C++, e.g. the standard set of functions and
types, is provided by the Standard Template Library or STL for
short.
Most of these functions and types are implemented using generic
programming, e.g. with templates.
The set of functionality in the STL includes

• dynamic arrays and associative arrays,
• lists and iterators,
• strings and complex numbers

Remark
Unfortunately, although the individual functions and types
are defined by the C++ standard, not all compilers support
all features.

R. Kriemann, »C++ for Scientific Computing« 253/316

Standard Template Library

Streams
Input and output in C++ is implemented in the form of streams. A
C++ stream can be considered to be a sequential stream of bytes to
which one can write or from which one can read data.
Writing to a stream is provided by the operator <<:
cout << 42 << endl;

The stream defined by the object cout, which is of type
std::ostream and provides the function:
class ostream {

...
std::ostream & operator << (const int n);
...

};

endl is a constant, which is equivalent to ’\n’, new line.

R. Kriemann, »C++ for Scientific Computing« 254/316

Standard Template Library

Output Streams
We also have already made use of the successive calling of the
operator <<:
cout << 42 << 3.1415 << ’5’ << "Hello World" << endl;

For new datatypes, special stream functions have to written, which
always follows the same scheme, e.g. for a vector:
#include <ostream>

std::ostream &
operator << (std::ostream & os, const vector_t & v)
{

for (size_t i = 0; i < v.get_size(); ++i)
os << v[i] << endl;

return os;
}

R. Kriemann, »C++ for Scientific Computing« 255/316

Standard Template Library

Output Streams
The corresponding stream output function for a matrix is declared
as:
std::ostream &
operator << (std::ostream & os, const matrix_t & M);

Remark
Remember to split declaration and implementation into
header and source file or to use the inline keyword.

R. Kriemann, »C++ for Scientific Computing« 256/316

Standard Template Library

Input Streams
Reading from a stream is provided by the operator >>:
int n;

cin >> n;

Here, cin is the equivalent to cout and represents the standard
input, e.g. keyboard input, and is of type std::istream.
Again, the operator >> can be used multiple times in a single
statement:
int n1, n2;
double f1;
float f2;

cin >> n1 >> f1 >> n2 >> f2;

The order in which the elements are read from the stream is defined
by the order at which the appear in the statement, e.g. n1 first and
f2 last.

R. Kriemann, »C++ for Scientific Computing« 257/316

Standard Template Library

Input Streams
Input stream functions are provided for all basic datatypes. For user
defined types, they have to be implemented similar to stream
output:
std::istream &
operator >> (std::istream & is, vector_t & v)
{

... // vector input
return is;

}

R. Kriemann, »C++ for Scientific Computing« 258/316

Standard Template Library

File Streams
The advantage of streams is, that one can switch between different
output media, e.g. standard output or a file, and use the same
functions. As an example, the output of a vector to a file looks like:
#include <fstream>

...

vector_t x;
std::ofstream file("output");

file << x << endl;

Here, file is an object of type std::ofstream provided by the
module fstream for file output. The constructor of the stream
expects the name of the file to write to.

R. Kriemann, »C++ for Scientific Computing« 259/316

Standard Template Library

File Streams
Similar, file input is used:
vector_t x;
std::ifstream file("input")

file >> x;

Now, file is of type std::ifstream for file input, provided by the
same module.
Closing an open file, being either an input or output file, is
implemented by the member function close:
file.close();

R. Kriemann, »C++ for Scientific Computing« 260/316

Standard Template Library

File Streams
Another member function of file streams is is_eof, which tests,
whether the end of the stream (or file) was reached:
// read whole file
while (! file.is_eof())
{

char c;

file >> c;
}

If a file is open or not can be tested with is_open:
std::ifstream file("input");

i f (! file.is_open())
throw "could not open file";

R. Kriemann, »C++ for Scientific Computing« 261/316

Standard Template Library

Stream Manipulators
The output format of data and, to some degree, also the input
format of data can be modified by manipulator objects. These are
provided by the file iomanip:

setw(n): set the minimal width of a data field in the stream
to n, e.g. each output item will at least use n
characters (default: n = 0).

setprecision(n): set the precision of the number output to n
(default: n = 6),

setfill(c): set the character to be used to fill the remaining
characters for an entry (default: whitespace),

#include <iomanip>
...

cout << setw(8) << 5
<< setprecision(4) << pi << endl;
<< setfill(’#’) << "pi" << endl;

R. Kriemann, »C++ for Scientific Computing« 262/316

Standard Template Library

Stream Manipulators
fixed: use fixed point format, e.g. “100.432”,

scientific: use scientific notation, e.g. “1.00432e2”,
flush: immediately write all output to stream if buffers are used,
endl: write new line character.

cout << fixed << 2.7182818284590452354 << endl
<< scientific << 2718.2818284590452354 << endl;

R. Kriemann, »C++ for Scientific Computing« 263/316

Standard Template Library

Containers and Iterators
Several container datatypes are implemented in the STL, e.g. lists,
vectors and sets. All of these types are template types, hence the
type of data that can be stored by container types is not fixed.
All containers in the STL implement the following functions:

insert(x): insert x into the container,
clear(): remove all elements in container,
size(): return number of elements in container.

empty(): return true, if the container is empty and false
otherwise.

Remark
The complexity of size is not O (1) for all container
classes and depends in the implementation of the STL.

R. Kriemann, »C++ for Scientific Computing« 264/316

Standard Template Library

Containers and Iterators
Furthermore, all of these container types can be accessed in the
same way: through iterators.
Suppose that container is such a type from the STL. Then,
container provides a subclass container::iterator, e.g.
container cont;
container::iterator iter;

and functions begin and end to return iterators corresponding to
the first and last element in the container, respectively.
container::iterator first = cont.begin();
container::iterator last = cont.end();

R. Kriemann, »C++ for Scientific Computing« 265/316

Standard Template Library

Containers and Iterators
That can be used to iterate through the container in the same way
as previously was done with arrays:
for (container::iterator iter = cont.begin();

iter != cont.end();
++iter)

{
...

}

To access the actual data element to which the current iterator
points, the derefence operator is overwritten by the iterator class:
for (container::iterator iter = cont.begin();

iter != cont.end();
++iter)

{
cout << *iter << endl;

}

R. Kriemann, »C++ for Scientific Computing« 266/316

Standard Template Library

Container Classes: Lists
Lists in C++ are implemented in list by the std::list template
class:
template <typename T>
class list
{

...
};

e.g.:
#include <list>

...

std::list< int > list1;
std::list< double * > list2;
std::list< std::list< double > > list3;

R. Kriemann, »C++ for Scientific Computing« 267/316

Standard Template Library

Container Classes: Lists
In addition to the standard container functions, the following
member functions are implemented in the list class:
front()/back(): return first/last element in list,

push_front(x): insert x at the front of the list,
push_back(x): insert x at the end of the list,

pop_front(): remove first element in list,
pop_back(): remove last element in list,

R. Kriemann, »C++ for Scientific Computing« 268/316

Standard Template Library

Container Classes: Lists
Example:
list< int > ilist;

ilist.push_front(1);
ilist.push_front(2);
ilist.push_back(3);
ilist.push_back(4);

for (list<int>::iterator it = ilist.begin();
it != ilist.end();
++it)

cout << *it << endl;

int sum = 0;

while (! ilist.empty())
{

sum += ilist.front();
ilist.pop_front();

}

R. Kriemann, »C++ for Scientific Computing« 269/316

Standard Template Library

Container Classes: Vectors
A vector is a container class providing a dynamic array, which can
grow or shrink with respect to the number of elements. Furthermore,
a vector provides O (1) access to elements in the array.
Again, vector is a template class:
template <typename T>
class vector
{

...
};

implemented in the module vector.
#include <vector>

...

std::vector< int > vector1;
std::vector< double * > vector2;
std::vector< std::vector< double > > vector3;

R. Kriemann, »C++ for Scientific Computing« 270/316

Standard Template Library

Container Classes: Vectors
To make resizing more efficient, vectors usually allocate more
memory than neccessary and do not immediately deallocate memory
if the number of elements is reduced.
The following functions are implemented in vector beside the
standard container functions:
front()/back(): return first/last element in vector,

resize(n): set new size for vector,
push_back(x): insert x at the end of the vector,

pop_back(): remove last element in vector,
operator [] (i): return i’th element of vector (read/write).

Remark
By default, elements in the vector are initialised with 0, or the
corresponding equivalent of the stored type, e.g. NULL.

R. Kriemann, »C++ for Scientific Computing« 271/316

Standard Template Library

Container Classes: valarray
Whereas vector is a container suitable for changing the size of the
container efficiently, in numerical applications the size is usually
fixed. For that, the class valarray is provided:
template <typename T>
class valarray
{

...
};

Examples:
#include <valarray>

...

std::valarray< int > array1(10);
std::valarray< double > array1(1000);

R. Kriemann, »C++ for Scientific Computing« 272/316

Standard Template Library

Container Classes: valarray
valarray provides all functions also defined by vector but
furthermore, overloads all standard arithmetics operators, e.g. +, -,
*, /, etc., with element wise versions. In addition to that, the class
also provides the following methods:

min(): return minimal element in array,
max(): return maxmial element in array,
sum(): return sum of elements in array,

R. Kriemann, »C++ for Scientific Computing« 273/316

Standard Template Library

Container Classes: valarray
Example for a vector class in linear algebra without pointers:
#include <valarray>

class vector_t
{
private:

std::valarray< real_t > coeffs;

public:
vector_t (const size_t n) { coeffs.resize(n); }
vector_t (const vector_t & v);

real_t operator [] (const size_t i) const
{ return coeffs[i]; }

vector_t & operator = (const vector_t & v)
{

coeffs = v.coeffs;
return *this;

}
};

R. Kriemann, »C++ for Scientific Computing« 274/316

Standard Template Library

Other Container Classes
Not described here are:

map: class for an associative array, e.g. indexed by
arbitrary types,

multimap: similar to map but allows different elements with
same index,

set: stores unique elements, indexed by the elements
themselves,

queue: container for FIFO (first-in first-out) access,
stack: container for LIFO (last-in first-out) access,

priority_queue: a container type, where the first element is always
the greatest with respect to some defined order.

R. Kriemann, »C++ for Scientific Computing« 275/316

Standard Template Library

Strings
Previous strings were implemented as null terminated character
arrays with all their limitations. The STL also provides a string class
which provides a much more convenient way of handling strings.
The class is implemented in the module string and is not a
template class (although implemented with such):
#include <string>

...

std::string str1; // empty string
std::string str2("Hello World"); // preinitialised string

cout << str2 << endl;

R. Kriemann, »C++ for Scientific Computing« 276/316

Standard Template Library

Strings
The string class implements operators for standard string handling,
e.g. assignment (=), concatenation (+ and +=) and comparison
(== and !=):
std::string str1("Hello");
std::string str2("World");
std::string str3;

str3 = str1 + ’ ’ + str2;
str3 += " Example";

i f (str1 == str2)
str3 = str1;

i f (str1 != str2)
str3 = str2;

R. Kriemann, »C++ for Scientific Computing« 277/316

Standard Template Library

Strings
It also provides functions for string operations:
find(substr): return position of substr in the string or

string::npos if not contained,
rfind(substr): similar to find, but start search at the end of the

string,
substr(pos, n): return substring starting at position pos with

length n,
c_str(): return traditional character array for the string.

Remark
The pointer returned by c_str is actually the internal
representation of the string. So do not delete that pointer!

R. Kriemann, »C++ for Scientific Computing« 278/316

Standard Template Library

Complex Numbers
As mentioned before, C++ does not support complex numbers as
part of the language. Fortunately, there is an implementation of a
class for complex numbers in the STL.
The complex class is again a template class, thereby enabling single
and double precision complex numbers:
#include <complex>

std::complex< float > c1;
std::complex< double > c2;

Complex objects store the real and the imaginary part in two public
member variables: re and im.
c1.re = 1.0;
c1.im = -2.0;

R. Kriemann, »C++ for Scientific Computing« 279/316

Standard Template Library

Complex Numbers
The constructors for complex numbers provide initialisation of both
data fields:
std::complex< double > I(0.0, 1.0);
std::complex< double > r(5.0); // == 5 + 0i
std::complex< double > z; // == 0 + 0i
std::complex< double > i = I;

Furthermore, all standard arithmetical operators are provided and all
standard mathematical functions are implemented:
std::complex< double > c1, c2, c3;

c1 = c2 * c3;
c2 = 2.0 + c3;
c3 = std::sqrt(-3.0 * c1 + c2 / c3);

R. Kriemann, »C++ for Scientific Computing« 280/316

Standard Template Library

Auto Pointers
When a block is left or an exception occurs in a function, all normal
record variables are destroyed. Unfortunately, this is not true for
record variables allocated by new, e.g.
{

vector_t x(10);
vector_t * y = new vector_t(10);

}// "x" is deallocated, but not "y"

The STL provides a solution for this problem: the class auto_ptr.
An auto pointer is a class with a single data element, a pointer of
the specified type:
template <typename T>
class auto_ptr
{
private:

T * ptr;
...
};

R. Kriemann, »C++ for Scientific Computing« 281/316

Standard Template Library

Auto Pointers
Furthermore, auto_ptr provides operators, such that a auto_ptr
variable behaves like a standard pointer:
#include <memory>

...

std::auto_ptr< vector_t > x(new vector_t(10));

x->fill(2.0);
cout << x->norm2() << endl;

One can even access the pointer stored in the auto pointer:
vector_t * y = x.get();

R. Kriemann, »C++ for Scientific Computing« 282/316

Standard Template Library

Auto Pointers
But what makes auto pointers so special?
Remember, that all normal record variables are automatically deleted
at the end of a block. Auto pointers are normal record variables:
std::auto_ptr< vector_t > x(new vector_t(10));

Hence, upon leaving the block, the destructor of auto_ptr is called.
But the destructor of auto_ptr is implemented as follows:
~autoptr () { delete ptr; }

Therefore, if the auto pointer is destroyed, so is the stored pointer.
{

vector_t x(10);
auto_ptr< vector_t > y(new vector_t(10));

}// "x" and "y" are deallocated

R. Kriemann, »C++ for Scientific Computing« 283/316

Standard Template Library

Auto Pointers
The class auto_ptr also provides two other functions for handling
the local pointer:
reset(ptr): Exchange the local pointer by ptr. If the previous

pointer was not NULL, it will be deleted.
release(): Set the local pointer value to NULL and return the

previous pointer, but do not delete it.
Especially release can be used to program exception safe:
vector_t *
f (...)
{

auto_ptr< vector_t > v(new vector_t(10));

...

return v.release(); // a previous exception would delete v
}

R. Kriemann, »C++ for Scientific Computing« 284/316

Class Inheritance

R. Kriemann, »C++ for Scientific Computing« 285/316

Class Inheritance

Inheritance
In an earlier section, generic programming was used to provide a
single implementation of an algorithm for multiple types. There is
another way to do that in C++: by using object oriented
programming or OOP.
In OOP one defines a hierarchy of classes, connected via inheritance,
sharing a set of functions, which then can be called for all members
of the hierarchy.
As an example, we will consider matrices. Up to now we had:

matrix_t: a dense matrix,
sparsematrix_t: a sparse matrix using lists and pointers and

crsmatrix_t: a sparse matrix using arrays.

R. Kriemann, »C++ for Scientific Computing« 286/316

Class Inheritance

Inheritance
All of these matrix types had similar functions:
size_t get_nrows () const;
size_t get_ncolumns () const;

void fill (const real_t f);
void scale (const real_t f);
void add (const real_t f, const matrix_t & x);

void mul_vec (const real_t alpha, const vector_t & x,
vector_t & y) const;

real_t normF () const;

but also different functions:
// sparse matrices
size_t get_nnonzero () const;

// dense matrices
real_t operator [] (const size_t i, const size_t j) const;

R. Kriemann, »C++ for Scientific Computing« 287/316

Class Inheritance

Base Classes
Now, let us define a general matrix type, with only the set of
common functions and data to all other matrix types:
class matrix_t {
private:

size_t nrows, ncolumns;
public:

matrix_t (const size_t n, const size_t m);
matrix_t (const matrix_t & M);

size_t get_nrows () const { return nrows };
size_t get_ncolumns () const { return ncolumns };

void fill (const real_t f);
void scale (const real_t f);
void add (const real_t f, const matrix_t & x);
void mul_vec (const real_t alpha, const vector_t & x,

vector_t & y) const;
real_t normF () const;

};

This class is the start of the inheritance hierarchy, a so called base
class.

R. Kriemann, »C++ for Scientific Computing« 288/316

Class Inheritance

Base Classes
Although the base class defines all functions that can be used with a
general matrix, it can not provide the corresponding implementation
since no data is provided. Therefore, most functions, which are
called methods in the terminology of OOP, are actually empty, i.e.
have no body.
In C++ this can be define by using

〈function header〉 = 0;

e.g.
void fill (const real_t f) = 0;

Such methods are called abstract. Classes with abstract methods
are also called abstract and can not be instantiated, e.g. one can
not define objects of that type.

R. Kriemann, »C++ for Scientific Computing« 289/316

Class Inheritance

Base Classes
The base class for matrices now looks like:
class matrix_t {
private:

size_t nrows, ncolumns;
public:

matrix_t (const size_t n, const size_t m);
matrix_t (const matrix_t & M);

size_t get_nrows () const { return nrows };
size_t get_ncolumns () const { return ncolumns };

void fill (const real_t f) = 0;
void scale (const real_t f) = 0;
void add (const real_t f, const matrix_t & x) = 0;
void mul_vec (const real_t alpha, const vector_t & x,

vector_t & y) const = 0;
real_t normF () const = 0;

};

R. Kriemann, »C++ for Scientific Computing« 290/316

Class Inheritance

Derived Classes
To really work with matrices, functionality has to be provided. Since
that is specific to specific matrix formats, one needs to define new
classes for each special matrix type.
But, since all matrix types can also be considered to be general
matrix, they are matrices in the end, this should also be described in
C++. For that, the new classes are derived from the base class:
class densematrix_t : matrix_t {

...
};

class sparsematrix_t : matrix_t {
...

};

Here, matrix_t is provided as a base class in the definition of the
derived classes using ’:’.

R. Kriemann, »C++ for Scientific Computing« 291/316

Class Inheritance

Derived Classes
A derived class inherits all methods and variables of the base class,
e.g. the variables nrows and ncolumns and the methods get_nrows
and get_ncolumns. Objects of the derived classes can therefore use
all methods which were already implemented in the base class
without providing an implementation:
densematrix_t M;

cout << M.get_nrows() << " x " << M.get_ncolumns() << endl;

Abstract methods can not be called.

R. Kriemann, »C++ for Scientific Computing« 292/316

Class Inheritance

Derived Classes
The derived classes now need to provide functionality, e.g.
class densematrix_t : matrix_t {
private:

std::valarray< real_t > coeffs;

public:
...
void scale (const real_t f);
...

};

void densematrix_t::scale (const real_t f)
{

coeffs *= f;
}

They overload the corresponding methods of the base class.

R. Kriemann, »C++ for Scientific Computing« 293/316

Class Inheritance

Derived Classes
The same can be done for sparse matrices:
class sparsematrix_t : matrix_t {
private:

std::valarray< size_t > rowptr;
std::valarray< size_t > colind;
std::valarray< real_t > coeffs;

public:
...
void scale (const real_t f);
...

};

void sparsematrix_t::scale (const real_t f)
{

coeffs *= f;
}

R. Kriemann, »C++ for Scientific Computing« 294/316

Class Inheritance

Polymorphism
Now, if objects of each derived class are created:
densematrix_t M(10, 10);
sparsematrix_t S(10, 10, 28);

the overloaded methods can be called like for any other class
previously presented:
M.scale(-1.0);
S.scale(10.0);

Here, OOP comes into play:
Every object of a derived class is also an object of the
base class.

matrix_t * A;

A = & M; // A now points to the dense M
A = & S; // A now points to the sparse S

R. Kriemann, »C++ for Scientific Computing« 295/316

Class Inheritance

Polymorphism
But what happens when one calls
A = & M; A->scale(1.5);
A = & S; A->scale(0.5);

Here, although A is a pointer to a base class, the object to which it
points is a derived class and OOP ensures, that the overloaded
methods are called. This is called polymorphism.
So, the previous instructions are equivalent to
M.scale(1.5);
S.scale(0.5);

R. Kriemann, »C++ for Scientific Computing« 296/316

Class Inheritance

Polymorphism
This allows us to define a general algorithm, e.g. CG iteration, to
work only with the base class:
void cg (const matrix_t & A, vector_t & x, const vector_t & b)
{

vector_t r(b), p, a(x.get_size());

A.mul_vec(-1.0, x, r); p = r;

for (size_t it = 0; it < 1000; it++) {
real_t lambda;

a.fill(0.0);
A.mul_vec(1.0, p, a);
lambda = dot(r, p) / dot(a, p);
x.add(lambda, p);
r.add(-lambda, a);
p.scale(- dot(r, a) / dot(a, p));
p.add(1.0, r);

i f (r.norm2() < 1e-10)
break;

} }

R. Kriemann, »C++ for Scientific Computing« 297/316

Class Inheritance

Polymorphism
But since all objects of derived classes are also objects of the base
class, the general algorithm can be used for these derived classes
too:
densematrix_t D(n, n);
vector_t x(n);
vector_t b(n);

cg(D, x, b);

sparsematrix_t S(n, n, nnonzero);

cg(S, x, b);

R. Kriemann, »C++ for Scientific Computing« 298/316

Class Inheritance

Virtual Methods
For polymorphism to actually work in C++, one thing has to be
added to the definition of methods in classes. Consider
class matrix_t {

...
void nullify () { scale(0.0); }

}

Here, the method nullify in the base class matrix_t makes use of
the method scale, which is only implemented in a derived class.
Such functions in a base class would not call the function in the
derived class:
densematrix_t M(10, 10);

M.nullify(); // does not call densematrix_t::scale(0.0)

R. Kriemann, »C++ for Scientific Computing« 299/316

Class Inheritance

Virtual Methods
For polymorphism to work in such situations, these functions have
to be virtual:
class matrix_t {
private:

size_t nrows, ncolumns;
public:

matrix_t (const size_t n, const size_t m);
matrix_t (const matrix_t & M);

size_t get_nrows () const { return nrows };
size_t get_ncolumns () const { return ncolumns };

virtual void fill (const real_t f) = 0;
virtual void scale (const real_t f) = 0;
virtual void add (const real_t f, const matrix_t & x) = 0;
virtual void mul_vec (const real_t alpha, const vector_t & x,

vector_t & y) const = 0;
virtual real_t normF () const = 0;

};

R. Kriemann, »C++ for Scientific Computing« 300/316

Class Inheritance

Virtual Methods
The same holds for derived classes:
class densematrix_t : matrix_t {

...
virtual void scale (const real_t f);
...

};

class sparsematrix_t : matrix_t {
...
virtual void scale (const real_t f);
...

};

Remark
The keyword virtual is only neccessary in the method
declaration, not the implementation.

R. Kriemann, »C++ for Scientific Computing« 301/316

Class Inheritance

Virtual Methods
Now, the call to scale(0.0) in the function nullify of the base
class will be handled by the corresponding methods in the derived
classes:
densematrix_t M(10, 10);

M.nullify(); // call to densematrix_t::scale(0.0)

Remark
If a class has a virtual function, it also must have a virtual
destructor. Constructors can not be virtual and
polymorphism does not work in constructors.

Remark
Abstract methods must also be virtual.

R. Kriemann, »C++ for Scientific Computing« 302/316

Class Inheritance

Extending the Hierarchy
In the beginning we had two different classes for a sparse matrix but
have implemented only the CRS version.
Instead of that, sparsematrix_t should only serve as a base class
for sparse matrices. Hence, it should only implement common
functions and data:
class sparsematrix_t : matrix_t
{
private:

size_t nnonzero;

public:
sparsematrix_t (const size_t n, const size_t m,

const size_t nnzero);

size_t get_nnonzero () const { return nnonzero; }
}

Note that it does not overload any method from matrix_t and is
therefore also an abstract class.

R. Kriemann, »C++ for Scientific Computing« 303/316

Class Inheritance

Extending the Hierarchy
The special sparse matrix types are then derived from the base
sparse matrix class:
class crssparsematrix_t : sparsematrix_t
{
private:

std::valarray< size_t > rowptr, colind;
std::valarray< real_t > coeffs;

public:
...
virtual void mul_vec (...) const;
...

};

class ptrsparsematrix_t : sparsematrix_t
{
private:

std::valarray< entry_t > entries;
public:

...
virtual void mul_vec (...) const;
...

};

R. Kriemann, »C++ for Scientific Computing« 304/316

Class Inheritance

Extending the Hierarchy
The complete class hierarchy now is:

matrix_t

densematrix_t sparsematrix_t

crssparsematrix_t ptrsparsematrix_t

Due to inhertance, each object of the new classes
crssparsematrix_t and ptrsparsematrix_t is not only an object
of sparsematrix_t, but also of matrix_t:
crssparsematrix_t S(10, 10, 28);
matrix_t * A = & S;

A->scale(5.0); // call to crssparsematrix_t::scale

cg(S, x, b);

R. Kriemann, »C++ for Scientific Computing« 305/316

Class Inheritance

Visibility
Remember the visibily keywords public, protected and private for
variables and functions in a record or class, respectively. The last
only differ in the context of inheritance:

One can access protected variables or functions of base
class in a derived class but not private members.

class densematrix_t
{

...
void print ()
{

// Error: nrows and ncolumns are private in matrix_t
cout << nrows << " x " << ncolumns << endl;

}
}

R. Kriemann, »C++ for Scientific Computing« 306/316

Class Inheritance

Visibility
Visibility can also be defined during inheritance. The previous
examples always assumed:
class densematrix_t : public matrix_t
{

...
};

class sparsematrix_t : public matrix_t
{

...
};

class crssparsematrix_t : public sparsematrix_t
{

...
};

class ptrsparsematrix_t : public sparsematrix_t
{

...
};

R. Kriemann, »C++ for Scientific Computing« 307/316

Class Inheritance

Visibility
One can also define private inheritance:
class densematrix_t : private matrix_t
{

...
};

class sparsematrix_t : private matrix_t
{

...
};

The difference is, that all methods in the base class are now private
in the derived class and can not be called from outside.

R. Kriemann, »C++ for Scientific Computing« 308/316

Class Inheritance

Constructors
A constructor of a base class can also be called in the constructor of
a derived class:
class densematrix_t : public matrix_t
{

...
densematrix_t (const size_t n, const size_t m)

: matrix_t(n, m)
{

coeffs.resize(n*m);
}
...

}

By default, the default constructor of the base class is called.

Remark
Constrcutors are not inherited, they have to be
implemented in each derived class.

R. Kriemann, »C++ for Scientific Computing« 309/316

Class Inheritance

Calling overloaded Functions
Methods of a base class can also be called in the derived class even
though they were overloaded:
class densematrix_t : public matrix_t
{

...
virtual void nullify ()
{

matrix_t::nullify(); // call nullify of base class
...

}
...

}

All methods in all base classes are available for that, not only the
direct ancestor.

R. Kriemann, »C++ for Scientific Computing« 310/316

Class Inheritance

Type Casting
We have discussed type casting operators, e.g. const_cast,
static_cast and dynamic_cast. Especially the last one is
important for classes, as it uses runtime type information and
respects class hierarchy:
densematrix_t * M = new densematrix_t(10, 10);
crssparsematrix_t * S1 = new crssparsematrix_t(10, 10, 28);
ptrsparsematrix_t * S2 = new ptrsparsematrix_t(10, 10, 28);

matrix_t * A = M;

// cast a pointer of a base class to a derived class
densematrix_t * M2 = dynamic_cast< densematrix_t * >(A);

A = S1;

// cast a pointer of a base class to a derived class
crssparsematrix_t * S3 = dynamic_cast< crssparsematrix_t * >(A);

A = S2;
S3 = dynamic_cast< crssparsematrix_t * >(A); // returns NULL
M2 = dynamic_cast< densematrix_t * >(A); // returns NULL

R. Kriemann, »C++ for Scientific Computing« 311/316

Class Inheritance

Type Casting
A dynamic cast will only return the requested pointer value, i.e.
perform the cast, if the object to which the pointer directs is of that
type, e.g. explicitly of that type or implicitly due to inheritance.
Otherwise a NULL pointer is returned.

Remark
The complexity of a dynamic cast is not O (1), because
the class hierarchy has to be parsed up to the specific
datatype.

Coding Principle No. 28
Use dynamic casts for type casting of derived datatypes as
much as possible.

R. Kriemann, »C++ for Scientific Computing« 312/316

Appendix

R. Kriemann, »C++ for Scientific Computing« 313/316

Coding Principles

1 choice of floating point
type

2 variable names
3 RAII
4 const usage
5 pointer init to NULL
6 float equality test
7 parentheses
8 implicit casts
9 default case in switch

10 const function arguments
11 return in function

12 function naming
13 functions and minimal

evaluation
14 array boundaries
15 pointer reset to NULL
16 deallocate pointer
17 string termination
18 type naming
19 header encapsulation
20 global variables
21 anonymous namespaces
22 default copy constructor

R. Kriemann, »C++ for Scientific Computing« 314/316

Coding Principles

23 data access in a record
24 operator overloading
25 default copy operator
26 detecting errors
27 use exceptions
28 dynamic casts

R. Kriemann, »C++ for Scientific Computing« 315/316

Literature

Bjarne Stroustrup,
The C++ Programming Language,
Addison-Wesley, 2000.

Scott Meyers,
Effective C++,
Addison-Wesley, 2005.

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Design Patterns,
Addison-Wesley, 1995.

The C++ Resources Network,
http://www.cplusplus.com/.

R. Kriemann, »C++ for Scientific Computing« 316/316

http://www.cplusplus.com/

