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Motivation
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Motivation Model Problem

Consider
−∆u = 0 in Ω = [0, 1]2

Using a uniform grid width stepwidth h

and standard piecewiese linear finite elements with nodal points
xi, i ∈ I, one obtains the stiffness matrix A as
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Motivation Matrixgraph

Define the matrix graph G(A) = (VA, EA) of A ∈ RI×I as

EA := I,

VA := {(i, j) ∈ I × I : i 6= j ∧ aij 6= 0},
i.e. edges in the graph are defined by the sparsity pattern of the
stiffness matrix.

Remark

Non-zero entries aij only exist in A if i and j are
neighboured.

For the model problem the matrix graph looks as
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Motivation Matrixgraph

Define distance dG(i, j) between nodes i, j ∈ I as length of
shortest path in G(A). Then, for i, j ∈ I we have:

‖xi − xj‖2 ≤ dG(i, j)h,

i.e. distance in R2 is mapped to distance in G(A).

i

jk

‖xi − xj‖2 =
√

13h, dG(i, j) = 5

‖xi − xk‖2 =
√

5h, dG(i, k) = 3
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Motivation Clustering via Graph Distance

Since nodes in G(A) with small distance are geometrically
neighboured, one can use graph distance to cluster indices.

I I0

I1

Recursively partition sub graphs for cluster tree construction.

Black Box Clustering and Parallel H-LU Factorisation 7/34



Graph Partitioning
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Graph Partitioning Requirements

Let A ∈ RI×I be a sparse matrix and G = G(A) = (VA, EA) the
corresponding matrix graph. Furthermore, let

diam(G) := max
i,j∈VA

dG(i, j)

diamG(V ) := max
i,j∈V

dG(i, j), V ⊆ VA

denote the diameter of the graph and of a sub graph, respectively.
For cluster tree construction, one needs a graph partitioning
algorithm with the following properties:

• compact sub graphs (small diameter),
• small edge-cut (small number of edges connecting sub

graphs).

Remark

No edges between sub graphs corresponds to decoupled
clusters and therefore to a block diagonal matrix.
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Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs
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Graph Partitioning General Graph Partitioning for Clustering

BFS based graph partitioning yields compact sub graphs, but not
neccessarily minimal edge-cut, but can be improved using
“Fiduccia-Mattheyses-Algorithm” (see Literature).

#edge-cut: 8 6
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Graph Partitioning General Graph Partitioning for Clustering

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V,E) a partitioning P = {V1, V2},
with V1 ∩ V2 = ∅ and V = V1 ∪ V2, of V is sought, such
that

#V1 ∼ #V2 and

IG(V1, V2) := #{(i, j) ∈ E : i ∈ V1 ∧ j ∈ V2} = min

Unfortunately, the graph partitioning problem is NP-hard. But
good approximation algorithm exist and are implemented in open
source software libraries, e.g.:

• METIS, Scotch (multi-level graph partitioning),

• CHACO (multi-level and spectral graph partitioning).
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Graph Partitioning General Graph Partitioning for Clustering

General black box clustering algorithm:

function blackbox cluster( G = (V,E) )
if #V ≤ nmin then

return cluster t := V ;
else
{G1, G2} = partition( G );
t1 := blackbox cluster( G1 );
t2 := blackbox cluster( G2 );
return cluster t := V with S(t) := {t1, t2};

end if
end

Here, partition implements the general graph partitioning
algorithm, e.g. from METIS etc..
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Graph Partitioning General Graph Partitioning for Clustering
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Admissibility
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Admissibility Prerequisites

Standard admissibility is defined by

min(diam(Ωt),diam(Ωs)) ≤ η dist(Ωt,Ωs)

with support Ωi for each cluster i and, hence, uses unavailable
geometrical data.

Distance in Graphs

For V1, V2 ⊂ V , the distance between V1 and V2 is defined as

distG(V1, V2) := min
i∈V1,j∈V2

distG(i, j) with

dist(i, j) := length of shortest path between i and j in G.
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Admissibility Weak Admissibility

The simplest admissibility condition for a block cluster (t, s) is
defined by

admweak(t, s) :=

{
true, if distG(t, s) > 1
false, otherwise

,

e.g. if no edge is connecting t and s in G.

t1

t2
t3

admweak(t1, t2) = true

admweak(t1, t3) = false

Weak admissibility is cheap to test and produces effective
partitions for H-arithmetics (see experiments).
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Admissibility Standard Admissibility

The standard admissibility is defined by

admstd(t, s) :=

{
true, min(diamG(t),diamG(s)) ≤ η distG(t, s)
false, otherwise

,

e.g. the equivalent of the geometrical admissibility.
Since diameter and distance between clusters in G costs O

(
n2
)
,

the admissibility is tested as:

• choose node i ∈ t and j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• construct surrounding t′ around t

in G via 1
η d̃iam.

• if t′ ∩ s = ∅, admstd(t, s) = true.

t1

t2
t3
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Admissibility Numerical Examples

H-LU factorisation of Model Problem:

N Geometric Black Box
Time Mem δ Time Mem δ
(sec) (MB) (sec) (MB)

2532 3.8 76 210-4 6.6 86 110-4
3582 10.0 169 110-4 15.7 187 610-5
5112 24.1 374 710-5 41.7 441 310-5
7292 61.1 840 410-5 116.1 1020 110-5

10232 144.9 1780 210-5 250.8 2110 810-6
403 79.1 285 110-3 106.5 292 110-3
513 194.5 634 110-3 326.1 763 710-4
643 520.3 1400 110-3 896.4 1760 410-4
813 1440.0 3560 510-4 2444.8 4330 210-4

1023 3875.5 8070 410-4 6575.7 9940 210-4

Accuracy of H-arithmetics defined by δ and chosen such that

‖I − (LHUH)−1A‖2 ≤ 10−4
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Nested Dissection
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Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition
have to be separated via a vertex separator.
Matrix graph:

Matrix:

Especially suited are graph partitioning algorithms yielding minimal
edge-cut, therefore, maximizing the size of the zero off-diagonal
matrix blocks.
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Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};
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Nested Dissection Subdividing the Vertex Separator

In contrast to classical nested dissection, H-matrices also use a
cluster tree for indices in the vertex seperator. Hence, further
subdivision is necessary.
Problem: restricting G to nodes in V might remove important
edges, e.g.

G|V

Therefore, graph partitioning for vertex separator is performed in
sub graph induced by V1, V2 and V.
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Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34



Nested Dissection Numerical Experiments

H-LU factorisation of Model Problem using nested dissection:

N Geometric Black Box
Time Mem δ Time Mem δ
(sec) (MB) (sec) (MB)

2532 0.9 51 110-3 1.3 47 310-5
3582 1.9 86 410-4 2.9 94 210-5
5112 4.5 212 210-4 6.5 198 910-6
7292 9.6 371 110-4 15.0 402 510-6

10232 20.2 878 610-5 31.6 819 210-6
403 12.6 99 110-2 32.7 135 310-4
513 46.9 300 310-3 97.6 323 210-4
643 117.4 592 210-3 289.1 719 110-4
813 269.8 1410 110-3 804.3 1570 810-5

1023 752.3 3020 110-3 1907.3 3370 610-5

Again, H-accuracy δ chosen such that

‖I − (LHUH)−1A‖2 ≤ 10−4
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Nested Dissection Numerical Experiments

Comparison of algebraic H-LU factorisation with direct solvers for

−∆u+ λu = f in Ω = [0, 1]2
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Parallelisation
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Parallelisation Direct Domain Decomposition

Graph G is partitioned into p sub graphs decoupled by single
vertex separator:

A00

A11

A22

A33

A44A40 A41 A42 A43

A
0
4

A
1
4

A
2
4

A
3
4

Parallel H-LU factorisation on processor i:

1 factorise Aii = LiiUii, (seq. LU Fac.)

2 solve Aip = LiiUip and Api = LpiUii, (seq. Algo.)

3 compute and exchange LpiUip, (log p steps)

4 update App = App −
∑
i LpiUip, (seq. Matrix Mult.)

5 factorise App = LppLpp (seq. LU Fac.)
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Parallelisation Direct Domain Decomposition

For the complexity of the parallel H-LU factorisation in the model
problem, we assume

• equal load of order n/p per sub graph,

• sizes nV of vertex separator is of optimal order p1/dn(d−1)/d

Then one obtains:

O
( n log2 n

p
+

p1/dn(d−1)/d log2 n log p
)

The speedup is limited by
size of vertex separator,
which increases with p.
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Parallelisation Nested Dissection

Graph G is hierarchically partitioned with local vertex separators:

A00

A11

A20 A21

A
0
2

A
1
2

A22

Parallel H-LU factorisation is based on algorithm for direct domain
decomposition with p = 2:

1 choose i ∈ {0, 1} such that Aii is on local processor;
2 factorise Aii = LiiUii, (Recursion)
3 solve Ai2 = LiiUi2 and A2i = L2iUii, (parallel Matrix Mult.)
4 compute and exchange L2iUi2,
5 update A22 = A22 −

∑
i L2iUi2, (seq. Matrix Mult.)

6 factorise A22 = L22L22 (seq. LU Fac.)
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Parallelisation Nested Dissection

Data distribution on to P := {1, . . . , p} processors follows
hierarchical decomposition during nested dissection:

{1, . . . , 4}

{1, 2}

{3, 4}

P

{1}

{2}
{1, 2}

{3}

{4}
{3, 4}

• on level 0, all processors handle
the matrix,

• on level 1, P is split into two
halves according to graph
bisection,

• recursively divide the processor
set.

For processor i:

• only handle those matrices with processor set P, if i ∈ P,

• exchange data only with other processors in P.
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Parallelisation Nested Dissection

For the complexity of the parallel H-LU factorisation in the model
problem, we again assume

• equal load of order n/p per sub graph,

• minimal order w.r.t. dimension d of local vertex separator

Then one obtains:

O
( n log2 n

p
+

n(d−1)/d log2 n log p
)

The speedup is now limited
by size O

(
n(d−1)/d

)
of first

vertex separator and much
less dependent on p.  5
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