Black Box Clustering and Parallel \mathcal{H} -LU Factorisation

Ronald Kriemann

Max Planck Institute for Mathematics

in the

Sciences Leipzig

Winterschool on \mathcal{H} -Matrices 2009

1 Motivation

2 Graph Partitioning

3 Admissibility

4 Nested Dissection

6 Parallelisation

Black Box Clustering and Parallel $\mathcal{H}\text{-}\mathsf{LU}$ Factorisation

Motivation

Motivation Model Problem

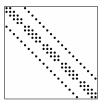
٩

Consider

$$-\Delta u = 0 \qquad \text{ in } \Omega = [0,1]^2$$

Using a uniform grid width stepwidth h

and standard piecewiese linear finite elements with nodal points $x_i, i \in I$, one obtains the stiffness matrix A as



Motivation Matrixgraph

Define the matrix graph $G(A) = (V_A, E_A)$ of $A \in \mathbb{R}^{I \times I}$ as

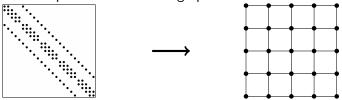
$$\begin{split} E_A &:= I, \\ V_A &:= \{(i,j) \in I \times I \ : \ i \neq j \land a_{ij} \neq 0\}, \end{split}$$

i.e. edges in the graph are defined by the sparsity pattern of the stiffness matrix.

Remark

Non-zero entries a_{ij} only exist in A if i and j are neighboured.

For the model problem the matrix graph looks as



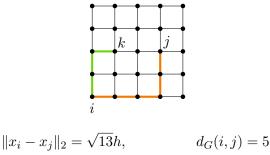
Black Box Clustering and Parallel $\mathcal{H}\text{-}\text{LU}$ Factorisation

Motivation Matrixgraph

Define distance $d_G(i, j)$ between nodes $i, j \in I$ as length of shortest path in G(A). Then, for $i, j \in I$ we have:

 $||x_i - x_j||_2 \le d_G(i,j)h,$

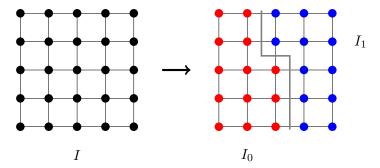
i.e. distance in \mathbb{R}^2 is mapped to distance in G(A).



Motivation Clustering via Graph Distance

٩

Since nodes in G(A) with small distance are geometrically neighboured, one can use graph distance to cluster indices.



Recursively partition sub graphs for cluster tree construction.

Graph Partitioning

Graph Partitioning Requirements

Let $A \in \mathbb{R}^{I \times I}$ be a sparse matrix and $G = G(A) = (V_A, E_A)$ the corresponding matrix graph. Furthermore, let

$$diam(G) := \max_{i,j \in V_A} d_G(i,j)$$
$$diam_G(V) := \max_{i,j \in V} d_G(i,j), \quad V \subseteq V_A$$

denote the diameter of the graph and of a sub graph, respectively. For cluster tree construction, one needs a graph partitioning algorithm with the following properties:

- compact sub graphs (small diameter),
- small edge-cut (small number of edges connecting sub graphs).

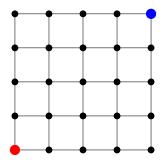
Remark

No edges between sub graphs corresponds to decoupled clusters and therefore to a block diagonal matrix.

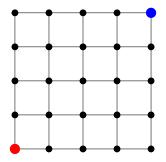
Graph Partitioning Partitioning via Breadth First Search

Algorithm:

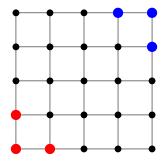
1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,



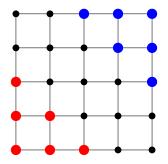
- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters



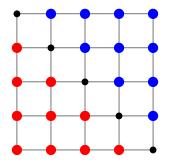
- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters



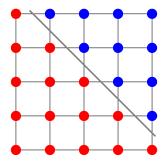
- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters



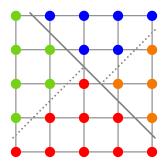
- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters



- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters

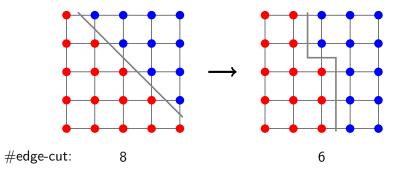


- 1 determine two nodes $i, j \in V_A$ with (almost) maximal distance,
- 2 perform simultaneous BFS from i and j to construct sub clusters:
 - per step, add unvisited neighbours of nodes in sub clusters
- ecurse in sub graphs



Graph Partitioning General Graph Partitioning for Clustering

BFS based graph partitioning yields compact sub graphs, but not neccessarily minimal edge-cut, but can be improved using "Fiduccia-Mattheyses-Algorithm" (see Literature).



Graph Partitioning General Graph Partitioning for Clustering

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V, E) a partitioning $P = \{V_1, V_2\}$, with $V_1 \cap V_2 = \emptyset$ and $V = V_1 \cup V_2$, of V is sought, such that

 $\#V_1 \sim \#V_2$ and $\mathcal{I}_G(V_1, V_2) := \#\{(i, j) \in E : i \in V_1 \land j \in V_2\} = \min$

Unfortunately, the graph partitioning problem is NP-hard. But good approximation algorithm exist and are implemented in open source software libraries, e.g.:

- METIS, Scotch (multi-level graph partitioning),
- CHACO (multi-level and spectral graph partitioning).

General black box clustering algorithm:

```
function blackbox_cluster( G = (V, E) )

if \#V \le n_{\min} then

return cluster t := V;

else

\{G_1, G_2\} = \text{partition}(G);

t_1 := \text{blackbox_cluster}(G_1);

t_2 := \text{blackbox_cluster}(G_2);

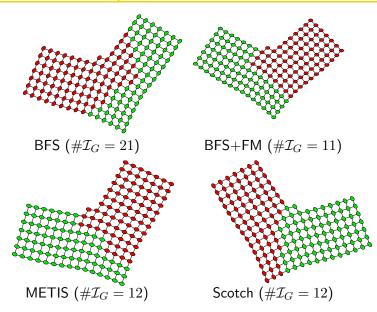
return cluster t := V with S(t) := \{t_1, t_2\};

end if

end
```

Here, **partition** implements the general graph partitioning algorithm, e.g. from METIS etc..

Graph Partitioning General Graph Partitioning for Clustering



Admissibility

Standard admissibility is defined by

 $\min(\operatorname{diam}(\Omega_t), \operatorname{diam}(\Omega_s)) \le \eta \operatorname{dist}(\Omega_t, \Omega_s)$

with support Ω_i for each cluster i and, hence, uses unavailable geometrical data.

Distance in Graphs

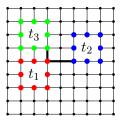
For $V_1, V_2 \subset V$, the distance between V_1 and V_2 is defined as

$$\begin{split} \operatorname{dist}_G(V_1,V_2) &:= \min_{i \in V_1, j \in V_2} \operatorname{dist}_G(i,j) & \text{ with } \\ \operatorname{dist}(i,j) &:= \text{ length of shortest path between } i \text{ and } j \text{ in } G. \end{split}$$

The simplest admissibility condition for a block cluster $\left(t,s\right)$ is defined by

$$\mathrm{adm}_{\mathsf{weak}}(t,s) := \begin{cases} \mathsf{true}, & \text{ if } \mathrm{dist}_G(t,s) > 1\\ \mathsf{false}, & \mathsf{otherwise} \end{cases},$$

e.g. if no edge is connecting t and s in G.



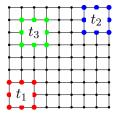
 $\operatorname{adm}_{\mathsf{weak}}(t_1, t_2) = \mathsf{true}$ $\operatorname{adm}_{\mathsf{weak}}(t_1, t_3) = \mathsf{false}$

Weak admissibility is cheap to test and produces effective partitions for \mathcal{H} -arithmetics (see experiments).

The standard admissibility is defined by

 $\mathrm{adm}_{\mathsf{std}}(t,s) := \begin{cases} \mathsf{true}, & \min(\mathrm{diam}_G(t), \mathrm{diam}_G(s)) \leq \eta \operatorname{dist}_G(t,s) \\ \mathsf{false}, & \mathsf{otherwise} \end{cases}$

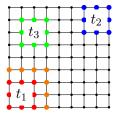
- choose node $i \in t$ and $j \in t$ with $\operatorname{dist}_G(i, j) = \max$,
- diam_G(t) $\leq 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- construct surrounding t' around tin G via $\frac{1}{\eta} \widetilde{\text{diam}}$.
- if $t' \cap s = \emptyset$, $\operatorname{adm}_{\mathsf{std}}(t, s) = \mathsf{true}$.



The standard admissibility is defined by

 $\mathrm{adm}_{\mathsf{std}}(t,s) := \begin{cases} \mathsf{true}, & \min(\mathrm{diam}_G(t), \mathrm{diam}_G(s)) \leq \eta \operatorname{dist}_G(t,s) \\ \mathsf{false}, & \mathsf{otherwise} \end{cases}$

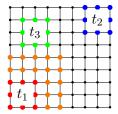
- choose node $i \in t$ and $j \in t$ with $\operatorname{dist}_G(i, j) = \max$,
- $\operatorname{diam}_G(t) \le 2\operatorname{dist}_G(i,j) =: \widetilde{\operatorname{diam}},$
- construct surrounding t' around tin G via $\frac{1}{\eta} \widetilde{\text{diam}}$.
- if $t' \cap s = \emptyset$, $\operatorname{adm}_{\mathsf{std}}(t, s) = \mathsf{true}$.



The standard admissibility is defined by

 $\mathrm{adm}_{\mathsf{std}}(t,s) := \begin{cases} \mathsf{true}, & \min(\mathrm{diam}_G(t), \mathrm{diam}_G(s)) \leq \eta \operatorname{dist}_G(t,s) \\ \mathsf{false}, & \mathsf{otherwise} \end{cases}$

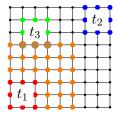
- choose node $i \in t$ and $j \in t$ with $\operatorname{dist}_G(i, j) = \max$,
- $\operatorname{diam}_G(t) \le 2\operatorname{dist}_G(i,j) =: \widetilde{\operatorname{diam}},$
- construct surrounding t' around tin G via $\frac{1}{\eta} \widetilde{\text{diam}}$.
- if $t' \cap s = \emptyset$, $\operatorname{adm}_{\mathsf{std}}(t, s) = \mathsf{true}$.



The standard admissibility is defined by

 $\mathrm{adm}_{\mathsf{std}}(t,s) := \begin{cases} \mathsf{true}, & \min(\mathrm{diam}_G(t), \mathrm{diam}_G(s)) \leq \eta \operatorname{dist}_G(t,s) \\ \mathsf{false}, & \mathsf{otherwise} \end{cases}$

- choose node $i \in t$ and $j \in t$ with $\operatorname{dist}_G(i, j) = \max$,
- diam_G(t) $\leq 2 \operatorname{dist}_G(i, j) =: \widetilde{\operatorname{diam}},$
- construct surrounding t' around tin G via $\frac{1}{\eta} \widetilde{\text{diam}}$.
- if $t' \cap s = \emptyset$, $\operatorname{adm}_{\mathsf{std}}(t, s) = \mathsf{true}$.



\mathcal{H} -LU factorisation of Model Problem:

N	Geometric			Black Box		
	Time	Mem	δ	Time	Mem	δ
	(sec)	(MB)		(sec)	(MB)	
253^{2}	3.8	76	2_{10} -4	6.6	86	1 ₁₀ -4
358^{2}	10.0	169	1 ₁₀ -4	15.7	187	6 ₁₀ -5
511^{2}	24.1	374	7 ₁₀ -5	41.7	441	3_{10} -5
729^{2}	61.1	840	4 ₁₀ -5	116.1	1020	1 ₁₀ -5
1023^{2}	144.9	1780	2 ₁₀ -5	250.8	2110	8 ₁₀ -6
40^{3}	79.1	285	1 ₁₀ -3	106.5	292	1 ₁₀ -3
51^{3}	194.5	634	1 ₁₀ -3	326.1	763	7_{10} -4
64^{3}	520.3	1400	1 ₁₀ -3	896.4	1760	4 ₁₀ -4
81^{3}	1440.0	3560	5 ₁₀ -4	2444.8	4330	2 ₁₀ -4
102^{3}	3875.5	8070	4 ₁₀ -4	6575.7	9940	2_{10} -4

Accuracy of \mathcal{H} -arithmetics defined by δ and chosen such that

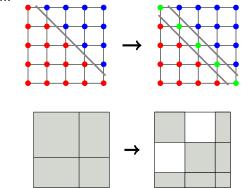
$$||I - (L_{\mathcal{H}}U_{\mathcal{H}})^{-1}A||_2 \le 10^{-4}$$

Nested Dissection

In nested dissection the two constructed sub graphs of a partition have to be separated via a vertex separator.

Matrix graph:

Matrix:



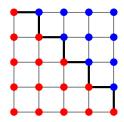
Especially suited are graph partitioning algorithms yielding minimal edge-cut, therefore, maximizing the size of the zero off-diagonal matrix blocks.

Black Box Clustering and Parallel $\mathcal{H}\text{-}\text{LU}$ Factorisation

Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:



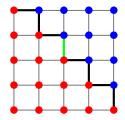
Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

Loop until $\mathcal{E} \neq \emptyset$:

• choose $(i, j) \in \mathcal{E}$;

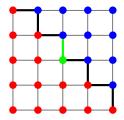


Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;



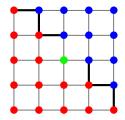
Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;
- $\mathcal{V} := \mathcal{V} \cup \{v\}; V' := V' \setminus \{v\};$

•
$$\mathcal{E} := \mathcal{E} \setminus \{(i, j') \in \mathcal{E}\};$$



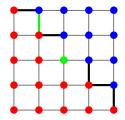
Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;
- $\mathcal{V} := \mathcal{V} \cup \{v\}; V' := V' \setminus \{v\};$

•
$$\mathcal{E} := \mathcal{E} \setminus \{(i, j') \in \mathcal{E}\};$$



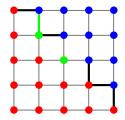
Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;
- $\mathcal{V} := \mathcal{V} \cup \{v\}; V' := V' \setminus \{v\};$

•
$$\mathcal{E} := \mathcal{E} \setminus \{(i, j') \in \mathcal{E}\};$$



Nested Dissection Constructing the Vertex Separator

Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

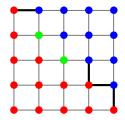
A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

Loop until $\mathcal{E} \neq \emptyset$:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;
- $\mathcal{V} := \mathcal{V} \cup \{v\}; V' := V' \setminus \{v\};$

•
$$\mathcal{E} := \mathcal{E} \setminus \{(i, j') \in \mathcal{E}\};$$



Nested Dissection Constructing the Vertex Separator

Let $V_1, V_2 \subset V, V_1 \cap V_2 = \emptyset$ be a partition of G = (V, E) and let $\mathcal{E} = \{(i, j) \in E : i \in V_1, j \in V_2\}$ be the edge-cut of V_1, V_2 .

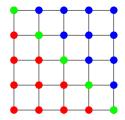
A vertex separator \mathcal{V} for V_1, V_2 can be obtained by computing a vertex cover of \mathcal{E} , i.e. a set of nodes incident to all edges in \mathcal{E} .

Algorithm:

Loop until $\mathcal{E} \neq \emptyset$:

- choose $(i, j) \in \mathcal{E}$;
- choose $v \in \{i, j\}$ such that $v \in V'$ with $\#V' = \max V_i$;
- $\mathcal{V} := \mathcal{V} \cup \{v\}; V' := V' \setminus \{v\};$

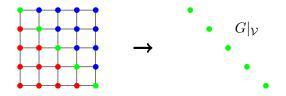
•
$$\mathcal{E} := \mathcal{E} \setminus \{(i, j') \in \mathcal{E}\};$$



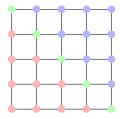
٩

In contrast to classical nested dissection, \mathcal{H} -matrices also use a cluster tree for indices in the vertex seperator. Hence, further subdivision is necessary.

Problem: restricting G to nodes in \mathcal{V} might remove important edges, e.g.

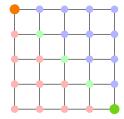


Therefore, graph partitioning for vertex separator is performed in sub graph induced by V_1, V_2 and \mathcal{V} .

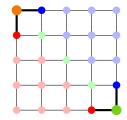


Modify BFS based algorithm for vertex separator:

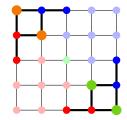
• choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,



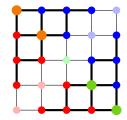
- choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,
- perform BFS step only for smaller node set to achieve balance,



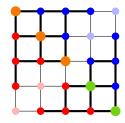
- choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,
- perform BFS step only for smaller node set to achieve balance,



- choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,
- perform BFS step only for smaller node set to achieve balance,

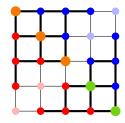


- choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,
- perform BFS step only for smaller node set to achieve balance,
- stop BFS iteration when all nodes in V have been visited.



Modify BFS based algorithm for vertex separator:

- choose start nodes for BFS in $\ensuremath{\mathcal{V}}$,
- perform BFS step only for smaller node set to achieve balance,
- stop BFS iteration when all nodes in V have been visited.



For further subdivision, only consider visited nodes to reduce complexity.

Remark

Still open: efficient construction of minimal surrounding graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS, Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel $\mathcal{H}\text{-}\text{LU}$ Factorisation

$\mathcal{H}\text{-}\mathsf{LU}$ factorisation of Model Problem using nested dissection:

N	Geometric			Black Box		
	Time	Mem	δ	Time	Mem	δ
	(sec)	(MB)		(sec)	(MB)	
253^{2}	0.9	51	1 ₁₀ -3	1.3	47	3 ₁₀ -5
358^{2}	1.9	86	4 ₁₀ -4	2.9	94	2 ₁₀ -5
511^{2}	4.5	212	210-4	6.5	198	9_{10} -6
729^{2}	9.6	371	1 ₁₀ -4	15.0	402	5 ₁₀ -6
1023^{2}	20.2	878	6 ₁₀ -5	31.6	819	2_{10} -6
40^{3}	12.6	99	1 ₁₀ -2	32.7	135	3 ₁₀ -4
51^{3}	46.9	300	3 ₁₀ -3	97.6	323	2_{10} -4
64^{3}	117.4	592	2 ₁₀ -3	289.1	719	1 ₁₀ -4
81^{3}	269.8	1410	1 ₁₀ -3	804.3	1570	8 ₁₀ -5
102^{3}	752.3	3020	1_{10} -3	1907.3	3370	6 ₁₀ -5

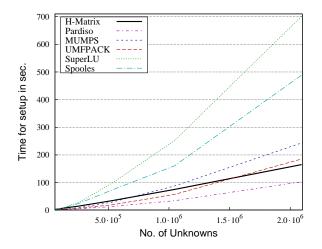
Again, $\mathcal H\text{-}\mathsf{accuracy}\ \delta$ chosen such that

$$||I - (L_{\mathcal{H}}U_{\mathcal{H}})^{-1}A||_2 \le 10^{-4}$$

Nested Dissection Numerical Experiments

Comparison of algebraic $\mathcal{H}\text{-}\text{LU}$ factorisation with direct solvers for

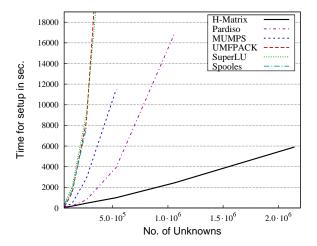
$$-\Delta u + \lambda u = f$$
 in $\Omega = [0, 1]^2$



Nested Dissection Numerical Experiments

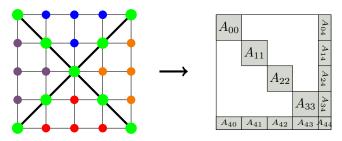
Comparison of algebraic $\mathcal{H}\text{-}\mathsf{LU}$ factorisation with direct solvers for

$$-\Delta u + \lambda u = f$$
 in $\Omega = [0, 1]^3$

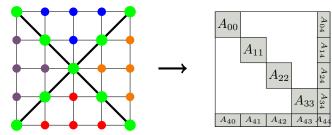


Parallelisation

Graph G is partitioned into p sub graphs decoupled by single vertex separator:



Graph G is partitioned into p sub graphs decoupled by single vertex separator:



Parallel \mathcal{H} -LU factorisation on processor *i*:

1 factorise
$$A_{ii} = L_{ii}U_{ii}$$
,(seq. LU Fac.)2 solve $A_{ip} = L_{ii}U_{ip}$ and $A_{pi} = L_{pi}U_{ii}$,(seq. Algo.)3 compute and exchange $L_{pi}U_{ip}$,(log p steps)4 update $A_{pp} = A_{pp} - \sum_i L_{pi}U_{ip}$,(seq. Matrix Mult.)5 factorise $A_{pp} = L_{pp}L_{pp}$ (seq. LU Fac.)

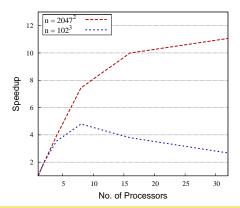
Parallelisation Direct Domain Decomposition

For the complexity of the parallel $\mathcal{H}\text{-}\mathsf{LU}$ factorisation in the model problem, we assume

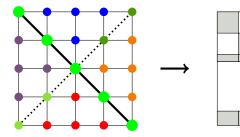
- equal load of order n/p per sub graph,
- sizes $n_{\mathcal{V}}$ of vertex separator is of optimal order $p^{1/d}n^{(d-1)/d}$ Then one obtains:

$$\mathcal{O}\Big(\frac{n\log^2 n}{p} + p^{1/d}n^{(d-1)/d}\log^2 n\log p\Big)$$

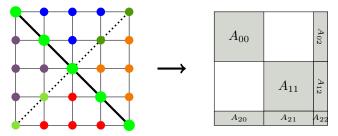
The speedup is limited by size of vertex separator, which increases with *p*.



Graph G is hierarchically partitioned with local vertex separators:



Graph G is hierarchically partitioned with local vertex separators:



Parallel \mathcal{H} -LU factorisation is based on algorithm for direct domain decomposition with p = 2:

- 1 choose $i \in \{0, 1\}$ such that A_{ii} is on local processor;
- **2** factorise $A_{ii} = L_{ii}U_{ii}$, (Recursion)

$$\mathbf{3}$$
 solve $A_{i2} = L_{ii}U_{i2}$ and $A_{2i} = L_{2i}U_{ii}$,

(parallel Matrix Mult.)

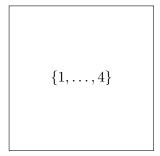
4 compute and exchange $L_{2i}U_{i2}$,

5 update
$$A_{22}=A_{22}-\sum_i L_{2i}U_{i2}$$

6 factorise
$$A_{22} = L_{22}L_{22}$$

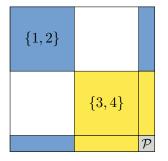
(seq. Matrix Mult.) (seq. LU Fac.)

Data distribution on to $\mathcal{P} := \{1, \dots, p\}$ processors follows hierarchical decomposition during nested dissection:



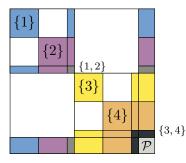
• on level 0, all processors handle the matrix,

Data distribution on to $\mathcal{P} := \{1, \dots, p\}$ processors follows hierarchical decomposition during nested dissection:



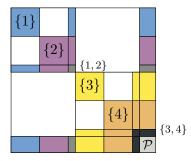
- on level 0, all processors handle the matrix,
- on level 1, \mathcal{P} is split into two halves according to graph bisection,

Data distribution on to $\mathcal{P} := \{1, \dots, p\}$ processors follows hierarchical decomposition during nested dissection:



- on level 0, all processors handle the matrix,
- on level 1, \mathcal{P} is split into two halves according to graph bisection,
- recursively divide the processor set.

Data distribution on to $\mathcal{P} := \{1, \dots, p\}$ processors follows hierarchical decomposition during nested dissection:



- on level 0, all processors handle the matrix,
- on level 1, \mathcal{P} is split into two halves according to graph bisection,
- recursively divide the processor set.

For processor *i*:

- only handle those matrices with processor set \mathcal{P} , if $i \in \mathcal{P}$,
- exchange data only with other processors in \mathcal{P} .

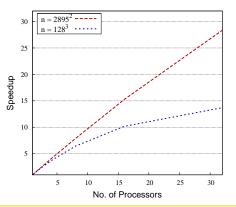
Ð

For the complexity of the parallel $\mathcal{H}\text{-}\mathsf{LU}$ factorisation in the model problem, we again assume

- equal load of order n/p per sub graph,
- minimal order w.r.t. dimension d of local vertex separator Then one obtains:

$$\mathcal{O}\Big(\begin{array}{c} \frac{n \log^2 n}{p} & + \\ n^{(d-1)/d} \log^2 n \log p \Big) \end{array}$$

The speedup is now limited by size $\mathcal{O}\left(n^{(d-1)/d}\right)$ of first vertex separator and much less dependent on p.



Literature

- L. Grasedyck, R. Kriemann and S. Le Borne, Domain Decomposition Based H-LU Preconditioning, to appear in "Numerische Mathematik".
- L. Grasedyck, R. Kriemann and S. Le Borne,

Parallel Black Box H-LU Preconditioning for Elliptic Boundary Value Problems,

"Computing and Visualization in Science", 11(4-6), pp. 273–291, 2008.

G. Karypis and V. Kumar

A fast and high quality multilevel scheme for partitioning irregular graphs, "SIAM Journal on Scientific Computing", 20(1), pp. 359–392, 1999.

- C.M. Fiduccia and R.M. Mattheyses,

A linear-time heuristic for improving network partitions,

In "Proceedings of the 19th Design Automation Conference", pp. 175–181, IEEE, 1982.