
Black Box Clustering and Parallel
H-LU Factorisation

Ronald Kriemann

Max Planck Institute for Mathematics

in the

Sciences Leipzig

Winterschool on H-Matrices
2009 HHHHHHHHHHHHHHHHHHHHH

Lib
pro

H
Lib

pro

Black Box Clustering and Parallel H-LU Factorisation 1/34

Overview

1 Motivation

2 Graph Partitioning

3 Admissibility

4 Nested Dissection

5 Parallelisation

Black Box Clustering and Parallel H-LU Factorisation 2/34

Motivation

Black Box Clustering and Parallel H-LU Factorisation 3/34

Motivation Model Problem

Consider
−∆u = 0 in Ω = [0, 1]2

Using a uniform grid width stepwidth h

and standard piecewiese linear finite elements with nodal points
xi, i ∈ I, one obtains the stiffness matrix A as

Black Box Clustering and Parallel H-LU Factorisation 4/34

Motivation Matrixgraph

Define the matrix graph G(A) = (VA, EA) of A ∈ RI×I as

EA := I,

VA := {(i, j) ∈ I × I : i 6= j ∧ aij 6= 0},
i.e. edges in the graph are defined by the sparsity pattern of the
stiffness matrix.

Remark

Non-zero entries aij only exist in A if i and j are
neighboured.

For the model problem the matrix graph looks as

Black Box Clustering and Parallel H-LU Factorisation 5/34

Motivation Matrixgraph

Define distance dG(i, j) between nodes i, j ∈ I as length of
shortest path in G(A). Then, for i, j ∈ I we have:

‖xi − xj‖2 ≤ dG(i, j)h,

i.e. distance in R2 is mapped to distance in G(A).

i

jk

‖xi − xj‖2 =
√

13h, dG(i, j) = 5

‖xi − xk‖2 =
√

5h, dG(i, k) = 3

Black Box Clustering and Parallel H-LU Factorisation 6/34

Motivation Clustering via Graph Distance

Since nodes in G(A) with small distance are geometrically
neighboured, one can use graph distance to cluster indices.

I I0

I1

Recursively partition sub graphs for cluster tree construction.

Black Box Clustering and Parallel H-LU Factorisation 7/34

Graph Partitioning

Black Box Clustering and Parallel H-LU Factorisation 8/34

Graph Partitioning Requirements

Let A ∈ RI×I be a sparse matrix and G = G(A) = (VA, EA) the
corresponding matrix graph. Furthermore, let

diam(G) := max
i,j∈VA

dG(i, j)

diamG(V) := max
i,j∈V

dG(i, j), V ⊆ VA

denote the diameter of the graph and of a sub graph, respectively.
For cluster tree construction, one needs a graph partitioning
algorithm with the following properties:

• compact sub graphs (small diameter),
• small edge-cut (small number of edges connecting sub

graphs).

Remark

No edges between sub graphs corresponds to decoupled
clusters and therefore to a block diagonal matrix.

Black Box Clustering and Parallel H-LU Factorisation 9/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning Partitioning via Breadth First Search

Algorithm:

1 determine two nodes i, j ∈ VA with (almost) maximal
distance,

2 perform simultaneous BFS from i and j to construct sub
clusters:
• per step, add unvisited neighbours of nodes in sub clusters

3 recurse in sub graphs

Black Box Clustering and Parallel H-LU Factorisation 10/34

Graph Partitioning General Graph Partitioning for Clustering

BFS based graph partitioning yields compact sub graphs, but not
neccessarily minimal edge-cut, but can be improved using
“Fiduccia-Mattheyses-Algorithm” (see Literature).

#edge-cut: 8 6

Black Box Clustering and Parallel H-LU Factorisation 11/34

Graph Partitioning General Graph Partitioning for Clustering

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V,E) a partitioning P = {V1, V2},
with V1 ∩ V2 = ∅ and V = V1 ∪ V2, of V is sought, such
that

#V1 ∼ #V2 and

IG(V1, V2) := #{(i, j) ∈ E : i ∈ V1 ∧ j ∈ V2} = min

Unfortunately, the graph partitioning problem is NP-hard. But
good approximation algorithm exist and are implemented in open
source software libraries, e.g.:

• METIS, Scotch (multi-level graph partitioning),

• CHACO (multi-level and spectral graph partitioning).

Black Box Clustering and Parallel H-LU Factorisation 12/34

Graph Partitioning General Graph Partitioning for Clustering

General black box clustering algorithm:

function blackbox cluster(G = (V,E))
if #V ≤ nmin then

return cluster t := V ;
else
{G1, G2} = partition(G);
t1 := blackbox cluster(G1);
t2 := blackbox cluster(G2);
return cluster t := V with S(t) := {t1, t2};

end if
end

Here, partition implements the general graph partitioning
algorithm, e.g. from METIS etc..

Black Box Clustering and Parallel H-LU Factorisation 13/34

Graph Partitioning General Graph Partitioning for Clustering

0

66

67

68

98

15
1

13

63

64

10
0

71

14

69

14
9

15
3

65

99

96

97

70

15
0

2

58

59

87
79

10
3

15

80

22
10

2

74

3

72

14
5

15
9

32

16
0

15
2

15
5

60

88

81

94

95

73

14
6

16
1

11

56

57

83
62

12

61

19

86

85

10
1

17

78

77

21

91

90

76

82

93

41

42

10
4

7

45

18
10

8

43

44

84

10
7

4

11
7

89

11
8

20

11
6

92

10
6

12
1

23

10
5

11
9

25

12
0

11
5

11
4

11
0

24

10
9

11
3

11
2

11
1

12
2

12
4

12
6

26

14
1

14
3

12
3

12
8

12
5

13
9

14
2

14
0

28

13
2

13
3

30

13
6

13
5

12
7

13
0

13
8

5

14
7

15
7

13
1

14
8

27

14
4

13
4

15
8

29

15
6

12
9

13
7

75

31

33

16

15
4

49

50

52

9

47

51

10

48

55

46

37

38

54

1

6

53

36

34

8

40

35

39

69

70

150

80

71

74

81

61

43

45

62

44

39

42

40

7

57

12

79 59

15

64

14

67

149

41

56

60

65

68

151
0

66

98

13

63

100

99

2

58

87

88

11

83

82

104

103

96

97

22

102

19

86

85

18

108

106

84

107

101

94

95

21

91

90

4

117

121

23

105

119

110

89

118

93

92

116

20 114

115

25

120

112

113

24

109

111

153

32

160

159

152

155

161

33

158

157

154

156

137

138

29

135

140

134

136

139

30

143

142

5

147

132
31

145

148

146

125

126

131

133

122

124

26

141

123

128

28

127

130

27

144

129

75

16

72

76

73

3

49

50

78

52

9

47

17

77

46

48

51

10

55

54

1

37

38

34

36

6

53

35

8

BFS (#IG = 21) BFS+FM (#IG = 11)

0
66

67

1

44

61

48

77

2

58

59

63

87

4

85

91

107

117

7

42

45

57

62

8

40

53

11

56

83

12

79

13

64

100

14
71

69

149

15

80

18

86

104

108
19

103

20

90

93

116

118

21

94

102

22

96

23

105

119

24

109

113

120

25

115

39

41

43

54

82

60

88

65

81

99

68

98

151

84

101

89

95

92

97

106

110

121

111

112

114

3

72

74

145

5

132

136

147

157

6

36

38

55

9

47

50

76

78

10

51

16

75

144

17

26

124

126

141

143

27

130

133

148

28

128

29

135

138

156

158

30

139

31

159

32

153

160

33

155

34

35

37

46

52

49

70

150

73

146

129

122

123

125

127

131

142

134

140

137

161

152

154

1

44

61

48

77

2

58

59

63

87

4

85

91

10
7

11
7

6

36

38

53

55

7

42

45

57

62
8

40

11

56

83

12

79
13

10
0

64

66

18

86

10
4

10
8

19

10
3

20

90

93

11
6

11
8

21

94

10
2

22

96

23

10
5

11
9

24

10
9

11
3

12
0

25

11
5

34

35

37

51

39

41

43

54

82

60

88

65

81

99

84

10
1

89

95

92

97

98

10
6

11
0

12
1

11
1

11
2

11
4

0

67

3

69

72

74

14
5

5

13
2

13
6

14
7

15
7

9

47

50

76

78

10

14

71

14
9

15

80

16

75

14
4

17

26

12
4

12
6

14
1

14
3

27

13
0

13
3

14
8

28

12
8

29

13
5

13
8

15
6

15
8

30

13
9

31

15
9

32

15
3

16
0

33

15
5

46

52

49

68

15
1

70

15
0

73

14
6

12
9

12
2

12
3

12
5

12
7

13
1

14
2

13
4

14
0

13
7

16
1

15
2

15
4

METIS (#IG = 12) Scotch (#IG = 12)

Black Box Clustering and Parallel H-LU Factorisation 14/34

Admissibility

Black Box Clustering and Parallel H-LU Factorisation 15/34

Admissibility Prerequisites

Standard admissibility is defined by

min(diam(Ωt),diam(Ωs)) ≤ η dist(Ωt,Ωs)

with support Ωi for each cluster i and, hence, uses unavailable
geometrical data.

Distance in Graphs

For V1, V2 ⊂ V , the distance between V1 and V2 is defined as

distG(V1, V2) := min
i∈V1,j∈V2

distG(i, j) with

dist(i, j) := length of shortest path between i and j in G.

Black Box Clustering and Parallel H-LU Factorisation 16/34

Admissibility Weak Admissibility

The simplest admissibility condition for a block cluster (t, s) is
defined by

admweak(t, s) :=

{
true, if distG(t, s) > 1
false, otherwise

,

e.g. if no edge is connecting t and s in G.

t1

t2
t3

admweak(t1, t2) = true

admweak(t1, t3) = false

Weak admissibility is cheap to test and produces effective
partitions for H-arithmetics (see experiments).

Black Box Clustering and Parallel H-LU Factorisation 17/34

Admissibility Standard Admissibility

The standard admissibility is defined by

admstd(t, s) :=

{
true, min(diamG(t),diamG(s)) ≤ η distG(t, s)
false, otherwise

,

e.g. the equivalent of the geometrical admissibility.
Since diameter and distance between clusters in G costs O

(
n2
)
,

the admissibility is tested as:

• choose node i ∈ t and j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• construct surrounding t′ around t

in G via 1
η d̃iam.

• if t′ ∩ s = ∅, admstd(t, s) = true.

t1

t2
t3

Black Box Clustering and Parallel H-LU Factorisation 18/34

Admissibility Standard Admissibility

The standard admissibility is defined by

admstd(t, s) :=

{
true, min(diamG(t),diamG(s)) ≤ η distG(t, s)
false, otherwise

,

e.g. the equivalent of the geometrical admissibility.
Since diameter and distance between clusters in G costs O

(
n2
)
,

the admissibility is tested as:

• choose node i ∈ t and j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• construct surrounding t′ around t

in G via 1
η d̃iam.

• if t′ ∩ s = ∅, admstd(t, s) = true.

t1

t2
t3

Black Box Clustering and Parallel H-LU Factorisation 18/34

Admissibility Standard Admissibility

The standard admissibility is defined by

admstd(t, s) :=

{
true, min(diamG(t),diamG(s)) ≤ η distG(t, s)
false, otherwise

,

e.g. the equivalent of the geometrical admissibility.
Since diameter and distance between clusters in G costs O

(
n2
)
,

the admissibility is tested as:

• choose node i ∈ t and j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• construct surrounding t′ around t

in G via 1
η d̃iam.

• if t′ ∩ s = ∅, admstd(t, s) = true.

t1

t2
t3

Black Box Clustering and Parallel H-LU Factorisation 18/34

Admissibility Standard Admissibility

The standard admissibility is defined by

admstd(t, s) :=

{
true, min(diamG(t),diamG(s)) ≤ η distG(t, s)
false, otherwise

,

e.g. the equivalent of the geometrical admissibility.
Since diameter and distance between clusters in G costs O

(
n2
)
,

the admissibility is tested as:

• choose node i ∈ t and j ∈ t with
distG(i, j) = max,

• diamG(t) ≤ 2 distG(i, j) =: d̃iam,

• construct surrounding t′ around t

in G via 1
η d̃iam.

• if t′ ∩ s = ∅, admstd(t, s) = true.

t1

t2
t3

Black Box Clustering and Parallel H-LU Factorisation 18/34

Admissibility Numerical Examples

H-LU factorisation of Model Problem:

N Geometric Black Box
Time Mem δ Time Mem δ
(sec) (MB) (sec) (MB)

2532 3.8 76 210-4 6.6 86 110-4
3582 10.0 169 110-4 15.7 187 610-5
5112 24.1 374 710-5 41.7 441 310-5
7292 61.1 840 410-5 116.1 1020 110-5

10232 144.9 1780 210-5 250.8 2110 810-6
403 79.1 285 110-3 106.5 292 110-3
513 194.5 634 110-3 326.1 763 710-4
643 520.3 1400 110-3 896.4 1760 410-4
813 1440.0 3560 510-4 2444.8 4330 210-4

1023 3875.5 8070 410-4 6575.7 9940 210-4

Accuracy of H-arithmetics defined by δ and chosen such that

‖I − (LHUH)−1A‖2 ≤ 10−4

Black Box Clustering and Parallel H-LU Factorisation 19/34

Nested Dissection

Black Box Clustering and Parallel H-LU Factorisation 20/34

Nested Dissection Vertex Separator

In nested dissection the two constructed sub graphs of a partition
have to be separated via a vertex separator.
Matrix graph:

Matrix:

Especially suited are graph partitioning algorithms yielding minimal
edge-cut, therefore, maximizing the size of the zero off-diagonal
matrix blocks.

Black Box Clustering and Parallel H-LU Factorisation 21/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Constructing the Vertex Separator

Let V1, V2 ⊂ V, V1 ∩ V2 = ∅ be a partition of G = (V,E) and let
E = {(i, j) ∈ E : i ∈ V1, j ∈ V2} be the edge-cut of V1, V2.

A vertex separator V for V1, V2 can be obtained by computing a
vertex cover of E , i.e. a set of nodes incident to all edges in E .

Algorithm:

Loop until E 6= ∅:

• choose (i, j) ∈ E ;

• choose v ∈ {i, j} such that v ∈ V ′

with #V ′ = maxVi;

• V := V ∪ {v}; V ′ := V ′ \ {v};

• E := E \ {(i, j′) ∈ E};

Black Box Clustering and Parallel H-LU Factorisation 22/34

Nested Dissection Subdividing the Vertex Separator

In contrast to classical nested dissection, H-matrices also use a
cluster tree for indices in the vertex seperator. Hence, further
subdivision is necessary.
Problem: restricting G to nodes in V might remove important
edges, e.g.

G|V

Therefore, graph partitioning for vertex separator is performed in
sub graph induced by V1, V2 and V.

Black Box Clustering and Parallel H-LU Factorisation 23/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

• choose start nodes for BFS in V,

• perform BFS step only for
smaller node set to achieve
balance,

• stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.

Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.

Black Box Clustering and Parallel H-LU Factorisation 24/34

Nested Dissection Numerical Experiments

H-LU factorisation of Model Problem using nested dissection:

N Geometric Black Box
Time Mem δ Time Mem δ
(sec) (MB) (sec) (MB)

2532 0.9 51 110-3 1.3 47 310-5
3582 1.9 86 410-4 2.9 94 210-5
5112 4.5 212 210-4 6.5 198 910-6
7292 9.6 371 110-4 15.0 402 510-6

10232 20.2 878 610-5 31.6 819 210-6
403 12.6 99 110-2 32.7 135 310-4
513 46.9 300 310-3 97.6 323 210-4
643 117.4 592 210-3 289.1 719 110-4
813 269.8 1410 110-3 804.3 1570 810-5

1023 752.3 3020 110-3 1907.3 3370 610-5

Again, H-accuracy δ chosen such that

‖I − (LHUH)−1A‖2 ≤ 10−4

Black Box Clustering and Parallel H-LU Factorisation 25/34

Nested Dissection Numerical Experiments

Comparison of algebraic H-LU factorisation with direct solvers for

−∆u+ λu = f in Ω = [0, 1]2

 0

 100

 200

 300

 400

 500

 600

 700

5.0 . 105 1.0 . 106 1.5 . 106 2.0 . 106

T
im

e
fo

r
se

tu
p

in
 s

ec
.

No. of Unknowns

 H-Matrix
 Pardiso
 MUMPS
 UMFPACK
 SuperLU
 Spooles

Black Box Clustering and Parallel H-LU Factorisation 26/34

Nested Dissection Numerical Experiments

Comparison of algebraic H-LU factorisation with direct solvers for

−∆u+ λu = f in Ω = [0, 1]3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

5.0 . 105 1.0 . 106 1.5 . 106 2.0 . 106

T
im

e
fo

r
se

tu
p

in
 s

ec
.

No. of Unknowns

 H-Matrix
 Pardiso
 MUMPS
 UMFPACK
 SuperLU
 Spooles

Black Box Clustering and Parallel H-LU Factorisation 27/34

Parallelisation

Black Box Clustering and Parallel H-LU Factorisation 28/34

Parallelisation Direct Domain Decomposition

Graph G is partitioned into p sub graphs decoupled by single
vertex separator:

A00

A11

A22

A33

A44A40 A41 A42 A43

A
0
4

A
1
4

A
2
4

A
3
4

Parallel H-LU factorisation on processor i:

1 factorise Aii = LiiUii, (seq. LU Fac.)

2 solve Aip = LiiUip and Api = LpiUii, (seq. Algo.)

3 compute and exchange LpiUip, (log p steps)

4 update App = App −
∑
i LpiUip, (seq. Matrix Mult.)

5 factorise App = LppLpp (seq. LU Fac.)

Black Box Clustering and Parallel H-LU Factorisation 29/34

Parallelisation Direct Domain Decomposition

Graph G is partitioned into p sub graphs decoupled by single
vertex separator:

A00

A11

A22

A33

A44A40 A41 A42 A43

A
0
4

A
1
4

A
2
4

A
3
4

Parallel H-LU factorisation on processor i:

1 factorise Aii = LiiUii, (seq. LU Fac.)

2 solve Aip = LiiUip and Api = LpiUii, (seq. Algo.)

3 compute and exchange LpiUip, (log p steps)

4 update App = App −
∑
i LpiUip, (seq. Matrix Mult.)

5 factorise App = LppLpp (seq. LU Fac.)

Black Box Clustering and Parallel H-LU Factorisation 29/34

Parallelisation Direct Domain Decomposition

For the complexity of the parallel H-LU factorisation in the model
problem, we assume

• equal load of order n/p per sub graph,

• sizes nV of vertex separator is of optimal order p1/dn(d−1)/d

Then one obtains:

O
(n log2 n

p
+

p1/dn(d−1)/d log2 n log p
)

The speedup is limited by
size of vertex separator,
which increases with p.

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

S
pe

ed
up

No. of Processors

 n = 20472

 n = 1023

Black Box Clustering and Parallel H-LU Factorisation 30/34

Parallelisation Nested Dissection

Graph G is hierarchically partitioned with local vertex separators:

A00

A11

A20 A21

A
0
2

A
1
2

A22

Parallel H-LU factorisation is based on algorithm for direct domain
decomposition with p = 2:

1 choose i ∈ {0, 1} such that Aii is on local processor;
2 factorise Aii = LiiUii, (Recursion)
3 solve Ai2 = LiiUi2 and A2i = L2iUii, (parallel Matrix Mult.)
4 compute and exchange L2iUi2,
5 update A22 = A22 −

∑
i L2iUi2, (seq. Matrix Mult.)

6 factorise A22 = L22L22 (seq. LU Fac.)

Black Box Clustering and Parallel H-LU Factorisation 31/34

Parallelisation Nested Dissection

Graph G is hierarchically partitioned with local vertex separators:

A00

A11

A20 A21

A
0
2

A
1
2

A22

Parallel H-LU factorisation is based on algorithm for direct domain
decomposition with p = 2:

1 choose i ∈ {0, 1} such that Aii is on local processor;
2 factorise Aii = LiiUii, (Recursion)
3 solve Ai2 = LiiUi2 and A2i = L2iUii, (parallel Matrix Mult.)
4 compute and exchange L2iUi2,
5 update A22 = A22 −

∑
i L2iUi2, (seq. Matrix Mult.)

6 factorise A22 = L22L22 (seq. LU Fac.)

Black Box Clustering and Parallel H-LU Factorisation 31/34

Parallelisation Nested Dissection

Data distribution on to P := {1, . . . , p} processors follows
hierarchical decomposition during nested dissection:

{1, . . . , 4}

{1, 2}

{3, 4}

P

{1}

{2}
{1, 2}

{3}

{4}
{3, 4}

• on level 0, all processors handle
the matrix,

• on level 1, P is split into two
halves according to graph
bisection,

• recursively divide the processor
set.

For processor i:

• only handle those matrices with processor set P, if i ∈ P,

• exchange data only with other processors in P.

Black Box Clustering and Parallel H-LU Factorisation 32/34

Parallelisation Nested Dissection

Data distribution on to P := {1, . . . , p} processors follows
hierarchical decomposition during nested dissection:

{1, . . . , 4}

{1, 2}

{3, 4}

P

{1}

{2}
{1, 2}

{3}

{4}
{3, 4}

• on level 0, all processors handle
the matrix,

• on level 1, P is split into two
halves according to graph
bisection,

• recursively divide the processor
set.

For processor i:

• only handle those matrices with processor set P, if i ∈ P,

• exchange data only with other processors in P.

Black Box Clustering and Parallel H-LU Factorisation 32/34

Parallelisation Nested Dissection

Data distribution on to P := {1, . . . , p} processors follows
hierarchical decomposition during nested dissection:

{1, . . . , 4}

{1, 2}

{3, 4}

P

{1}

{2}
{1, 2}

{3}

{4}
{3, 4}

• on level 0, all processors handle
the matrix,

• on level 1, P is split into two
halves according to graph
bisection,

• recursively divide the processor
set.

For processor i:

• only handle those matrices with processor set P, if i ∈ P,

• exchange data only with other processors in P.

Black Box Clustering and Parallel H-LU Factorisation 32/34

Parallelisation Nested Dissection

Data distribution on to P := {1, . . . , p} processors follows
hierarchical decomposition during nested dissection:

{1, . . . , 4}

{1, 2}

{3, 4}

P

{1}

{2}
{1, 2}

{3}

{4}
{3, 4}

• on level 0, all processors handle
the matrix,

• on level 1, P is split into two
halves according to graph
bisection,

• recursively divide the processor
set.

For processor i:

• only handle those matrices with processor set P, if i ∈ P,

• exchange data only with other processors in P.

Black Box Clustering and Parallel H-LU Factorisation 32/34

Parallelisation Nested Dissection

For the complexity of the parallel H-LU factorisation in the model
problem, we again assume

• equal load of order n/p per sub graph,

• minimal order w.r.t. dimension d of local vertex separator

Then one obtains:

O
(n log2 n

p
+

n(d−1)/d log2 n log p
)

The speedup is now limited
by size O

(
n(d−1)/d

)
of first

vertex separator and much
less dependent on p. 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30

S
pe

ed
up

No. of Processors

 n = 28952

 n = 1283

Black Box Clustering and Parallel H-LU Factorisation 33/34

Literature

L. Grasedyck, R. Kriemann and S. Le Borne,

Domain Decomposition Based H-LU Preconditioning,

to appear in “Numerische Mathematik”.

L. Grasedyck, R. Kriemann and S. Le Borne,

Parallel Black Box H-LU Preconditioning for Elliptic Boundary Value
Problems,

“Computing and Visualization in Science”, 11(4-6), pp. 273–291, 2008.

G. Karypis and V. Kumar

A fast and high quality multilevel scheme for partitioning irregular graphs,

“SIAM Journal on Scientific Computing”, 20(1), pp. 359–392, 1999.

C.M. Fiduccia and R.M. Mattheyses,

A linear-time heuristic for improving network partitions,

In “Proceedings of the 19th Design Automation Conference”, pp.
175–181, IEEE, 1982.

Black Box Clustering and Parallel H-LU Factorisation 34/34

