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Motivation | Model Problem

Consider
~Au=0 in Q=10,1]?

Using a uniform grid width stepwidth h

and standard piecewiese linear finite elements with nodal points
xi,1 € I, one obtains the stiffness matrix A as
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Motivation | Matrixgraph

Define the matrix graph G(A) = (Va, E4) of A € R as
Ep =1,
Va:={(i,j) € I xI : i# jAa;j #0},
i.e. edges in the graph are defined by the sparsity pattern of the
stiffness matrix.
Remark

Non-zero entries a;; only exist in A if i and j are
neighboured.

For the model problem the matrix graph looks as
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Motivation | Matrixgraph

Define distance d¢ (7, j) between nodes 7,5 € I as length of
shortest path in G(A). Then, for i,j € I we have:

|z — zjll2 < da(i, j)h,

i.e. distance in R? is mapped to distance in G(A).

° k J

1
i — a5l = V13h, da(i,j) =5
sz — {L’kHQ = \/Sh, dg(i, k) = 3
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Motivation Clustering via Graph Distance
Since nodes in G(A) with small distance are geometrically

neighboured, one can use graph distance to cluster indices.

I

I Iy

Recursively partition sub graphs for cluster tree construction.
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Graph Partitioning
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Graph Partitioning | Requirements

Let A € R'*! be a sparse matrix and G = G(A) = (V4, E4) the
corresponding matrix graph. Furthermore, let
diam(G) := max dg(i,7)
i7jEVA
diamg(V) := maxdg(i,j), V CVy
1,j€V

denote the diameter of the graph and of a sub graph, respectively.
For cluster tree construction, one needs a graph partitioning
algorithm with the following properties:
e compact sub graphs (small diameter),
e small edge-cut (small number of edges connecting sub
graphs).
Remark

No edges between sub graphs corresponds to decoupled
clusters and therefore to a block diagonal matrix.
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Graph Partitioning | Partitioning via Breadth First Search

Algorithm:

@ determine two nodes 7, j € V4 with (almost) maximal
distance,
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Graph Partitioning | Partitioning via Breadth First Search

Algorithm:
@ determine two nodes 7, j € V4 with (almost) maximal
distance,
@ perform simultaneous BFS from ¢ and j to construct sub
clusters:

e per step, add unvisited neighbours of nodes in sub clusters
© recurse in sub graphs
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Graph Partitioning | General Graph Partitioning for Clustering

BFS based graph partitioning yields compact sub graphs, but not
neccessarily minimal edge-cut, but can be improved using
“Fiduccia-Mattheyses-Algorithm"” (see Literature).
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Graph Partitioning | General Graph Partitioning for Clustering

In graph theory, the graph partitioning problem is defined as:

Given a graph G = (V, E) a partitioning P = {V;, Va},
with ViNVa =0 and V = Vi UV, of V is sought, such
that

#V1 ~ #Vo  and
Ia(Vi, Vo) :=#{(i,j) e E : i€ Vi Aj € Vao} =min

Unfortunately, the graph partitioning problem is NP-hard. But
good approximation algorithm exist and are implemented in open
source software libraries, e.g.:

e METIS, Scotch (multi-level graph partitioning),
e CHACO (multi-level and spectral graph partitioning).
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Graph Partitioning | General Graph Partitioning for Clustering

General black box clustering algorithm:

function blackbox_cluster( G = (V, E) )
if #V <npmn then
return cluster t .=V
else
{G1, G2} = partition( G );
t1 := blackbox_cluster( Gy );
to := blackbox_cluster( G2 );
return cluster t ;= V with S(t) := {t1,t2};
end if
end

Here, partition implements the general graph partitioning
algorithm, e.g. from METIS etc..
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Graph Partitioning General Graph Partitioning for Clustering

METIS (#I¢ = 12) Scotch (#Z¢ = 12)
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Admissibility
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Admissibility | Prerequisites

Standard admissibility is defined by
min(diam(€2), diam(€Qs)) < ndist(€2, Q)

with support §2; for each cluster ¢ and, hence, uses unavailable
geometrical data.

Distance in Graphs
For V1,V, C V, the distance between V7 and V5 is defined as
distg(Vq, Vo) := in distg(i, j ith
ista(V1, V2) eiiin - dis ai,j)  wi
dist(7, j) := length of shortest path between i and j in G.
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Admissibility | weak Admissibility

The simplest admissibility condition for a block cluster (¢, s) is
defined by

b

true, if distg(t,s) > 1
adm t,s) =
weak (£ ) {false, otherwise

e.g. if no edge is connecting ¢t and s in G.

1
+—o 13

) t2 ¢ admyeak(t1,t2) = true
¢ t1 admyeak (t1,t3) = false

Weak admissibility is cheap to test and produces effective
partitions for H-arithmetics (see experiments).
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Admissibility | Standard Admissibility

The standard admissibility is defined by

true, min(diamg(t),diamg(s)) < ndistg(t, s)

. )
false, otherwise

admstd(tv S) = {
e.g. the equivalent of the geometrical admissibility.

Since diameter and distance between clusters in G costs O (n2)
the admissibility is tested as:

e choose node ¢ € t and j € t with 1 °
diste(4, j) = max, ] t'3 b2 9
o diamg(t) < 2distg (i, j) =: diam,
e construct surrounding t’ around ¢
in G via %diam. ¢ty

o if ! Ns=0,admgq(t,s) = true.
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Admissibility | Standard Admissibility

The standard admissibility is defined by

true, min(diamg(t),diamg(s)) < ndistg(t, s)

. )
false, otherwise

admgg(t, 5) := {
e.g. the equivalent of the geometrical admissibility.

Since diameter and distance between clusters in G costs O (n2)
the admissibility is tested as:

e choose node ¢ € t and j € t with 1 °
diste(4, j) = max, ] t'3 b2 9
o diamg(t) < 2distg (i, j) =: diam, e
e construct surrounding t’ around ¢
in G via %diam. ¢t
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Numerical Examples

H-LU factorisation of Model Problem:

N Geometric Black Box
Time Mem 1) Time Mem 1)
(sec)  (MB) (sec) (MB)

2532 3.8 76 2i0-4 6.6 86 1i0-4
3582 100 169 10-4 15.7 187 619-5
5112 241 374 T10-5 417 441 310-5
7292 61.1 840 40-5 116.1 1020 1;0-5
10232 1449 1780 2;0-5 250.8 2110 819-6
403 79.1 285 140-3 1065 292 140-3
512 1945 634 110-3 326.1 763 Tip-4
643  520.3 1400 119-3 896.4 1760 40-4
81% 1440.0 3560 b5i9-4 2444.8 4330 2,0-4
1023 3875.5 8070 4,9-4 65757 9940 20-4

Accuracy of H-arithmetics defined by § and chosen such that
11 = (L3 Up) " Allg < 1077
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Nested Dissection
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Nested Dissection | Vertex Separator

In nested dissection the two constructed sub graphs of a partition
have to be separated via a vertex separator.
Matrix graph:

\\\ \i\\
\\ — \\\\
\\ \\\\
> \ »
Matrix:
—)

Especially suited are graph partitioning algorithms yielding minimal
edge-cut, therefore, maximizing the size of the zero off-diagonal
matrix blocks.
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Nested Dissection | Constructing the Vertex Separator

Let V4,Va C V, V1 NV, = () be a partition of G = (V, E) and let
E={(i,j) € E : i€V, j € Va} be the edge-cut of Vi, V.

A vertex separator V for V7, V5 can be obtained by computing a
vertex cover of £, i.e. a set of nodes incident to all edges in £.

Algorithm:
Loop until £ # 0:
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Nested Dissection | Subdividing the Vertex Separator

In contrast to classical nested dissection, H-matrices also use a
cluster tree for indices in the vertex seperator. Hence, further
subdivision is necessary.

Problem: restricting G to nodes in )V might remove important
edges, e.g.

[} G‘V
—_— °

Therefore, graph partitioning for vertex separator is performed in
sub graph induced by Vi, V5 and V.
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Nested Dissection | Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:
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Nested Dissection | Subdividing the Vertex Separator
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smaller node set to achieve —— —9—
balance, ‘ ‘ ‘
|
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Nested Dissection | Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

e choose start nodes for BFS in V,

e perform BFS step only for
smaller node set to achieve
balance,

e stop BFS iteration when all
nodes in V have been visited.
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Nested Dissection | Subdividing the Vertex Separator

Modify BFS based algorithm for vertex separator:

e choose start nodes for BFS in V,

e perform BFS step only for
smaller node set to achieve
balance,

e stop BFS iteration when all
nodes in V have been visited.

For further subdivision, only consider visited nodes to reduce
complexity.
Remark

Still open: efficient construction of minimal surrounding
graph for subdivision of vertex separator.

Unfortunately, no graph partitioning packages, e.g. METIS,
Scotch, etc., applicable to vertex separator partitioning.
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Numerical Experiments

‘H-LU factorisation of Model Problem using nested dissection:

N Geometric Black Box
Time Mem ) Time Mem )
(sec) (MB) (sec)  (MB)

2532 0.9 51 110-3 1.3 47  310-5
3582 1.9 86 4i0-4 2.9 94 2,0-5
5112 45 212 2,0-4 6.5 198 919-6
7292 96 371 1104 150 402 519-6
10232 202 878 619-5 31.6 819 240-6
40° 126 99 110-2 327 135 304
51 469 300 310-3 97.6 323 2,0-4
643 1174 592 210-3 289.1 719 1,0-4
81° 269.8 1410 1,0-3 804.3 1570 810-5
1023 752.3 3020 1;0-3 1907.3 3370 619-5

Again, H-accuracy & chosen such that

1T — (LyUp) Al <1071
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Nested Dissection | Numerical Experiments

Comparison of algebraic H-LU factorisation with direct solvers for

—Au+du=f inQ=10,1]°

Time for setup in sec.

50-10° 1.0-10° 15-10° 2.0-10°
No. of Unknowns
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Nested Dissection | Numerical Experiments

Comparison of algebraic H-LU factorisation with direct solvers for

—Au+du=f inQ=1[0,1
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Parallelisation
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Parallelisation | Direct Domain Decomposition

Graph G is partitioned into p sub graphs decoupled by single

vertex separator:
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Parallelisation | Direct Domain Decomposition

Graph G is partitioned into p sub graphs decoupled by single
vertex separator:

AOO

Az

vey | vy [ viy [ voy

A33

Ago [ Aar [Aas [ Aag

=
'S
=

Parallel H-LU factorisation on processor i:
@ factorise A;; = L;; U,
9 solve Aip = L“Uzp and Api = LpiUiiv
© compute and exchange L,;U;p,
O update A, = App — >, LpiUip,
@ factorise App = LppLpy

(seq. LU Fac.)
(seq. Algo.)

(log p steps)

(seq. Matrix Mult.)
(seq. LU Fac.)
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Parallelisation | Direct Domain Decomposition

For the complexity of the parallel H-LU factorisation in the model

problem, we assume

e equal load of order n/p per sub graph,

e sizes ny of vertex separator is of optimal order p/dn(d—1)/d

Then one obtains:

nlog?n
o o
pHp(d=1/d 1662 10gp>

The speedup is limited by

size of vertex separator,
which increases with p.
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Parallelisation | Nested Dissection

Graph G is hierarchically partitioned with local vertex separators:
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Parallelisation | Nested Dissection

Graph G is hierarchically partitioned with local vertex separators:

b
Aoo S
_)
hS
A |2
Azg Az Hag

Parallel H-LU factorisation is based on algorithm for direct domain
decomposition with p = 2:
@ choose ¢ € {0,1} such that A;; is on local processor;

@ factorise A;; = LUy, (Recursion)
9 solve Aig = LiiUiQ and Agi = LQiUii, (paraIIeI Matrix Mult.)
@ compute and exchange Ly; U9,

©® update Aoy = Aoy — El Lo;U;s, (seq. Matrix Mult.)
@ factorise Agg = Log Loy (seq. LU Fac.)
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Parallelisation | Nested Dissection

Data distribution on to P := {1,...,p} processors follows
hierarchical decomposition during nested dissection:

e on level 0, all processors handle
the matrix,

a,...4
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the matrix,

e on level 1, P is split into two

halves according to graph
{3,4} bisection,
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Parallelisation | Nested Dissection

Data distribution on to P := {1, ...,p} processors follows
hierarchical decomposition during nested dissection:

e on level 0, all processors handle

the matrix,
{1,2 e on level 1, P is split into two
{3} halves according to graph
1 bisection,
1] (3,4} e recursively divide the processor

set.

For processor i:

e only handle those matrices with processor set P, if i € P,
e exchange data only with other processors in P.
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Parallelisation | Nested Dissection

For the complexity of the parallel H-LU factorisation in the model

problem, we again assume

e equal load of order n/p per sub graph,
e minimal order w.r.t. dimension d of local vertex separator

Then one obtains:

O( nlog?n
p
pld=1/d log? nlog p)
The speedup is now limited
by size O (n(d_l)/d) of first

vertex separator and much
less dependent on p.
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