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Motivating Example H-Arithmetic with Accumulators

Let A, B and C be H-matrices with the shownstructure.For the multiplication C := A · B several updatesfrom different levels of the H-hierarchy are applied toa single block.As an example, the updates for Ct′,s′ are:
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Similar updates are computed for all other sub blocks of the parent block Ct,s.

In a classical implementation, all sub multiplications sum up to 24 truncations forthe 3 low-rank blocks in Ct,s.
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Motivating Example H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwardsshifted down following the hierarchy.1
:= +

+= +
+=

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations persubblock on level 4, summing up to 15 truncations for all low-rank blocks in Ct,s.Performing this for the full H-multiplication C := C + A · B the number oftruncations is reduced from 646 to 500.

1S. Börm, “Hierarchical matrix arithmetic with accumulated updates”, submitted to Computing andVisualization in Science, 2017.
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Arithmetic H-Arithmetic with Accumulators

Let I be an index set, T (I) a cluster tree over I and T = T (I × I) a block clustertree over T (I). For t ∈ T (I) let St denote the set of sons of t . Furthermore, let
A, B, C be H-matrices over T .For each matrix block Ct,s we define an accumulator Ut,s ∈ Ct×s and a set Pt,s of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g.,
Ut,s = 0 and Pt,s = ∅ for all (t, s) ∈ T .

H-multiplication is split into two functions, which collect the updates and shiftthem down to sub blocks:
procedure AddProduct(At,r , Br,s, Ct,s)

if At,r , Br,s, Ct,s are block matrices then
Pt,s := Pt,s ∪ {(At,r , Br,s)};

else
Ut,s := Ut,s + At,r · Br,s;

procedure ApplyUpdates(Ct,s)
if Ct,s is a block matrix then

for t′ ∈ St , s′ ∈ Ss do
Ut′,s′ := Ut′,s′ + Ut,s|t′,s′ ;
for (At,r , Br,s) ∈ Pt,s, r ′ ∈ Sr doAddProduct( At′,r′ , Br′,s′ , Ct′,s′ );ApplyUpdates( Ct′,s′ );

else
Ct,s := Ct,s + Ut,s;
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Numerical Results H-Arithmetic with Accumulators

H-matrix multiplication experiments are computed with H-matrix based onLaplace SLP operator, on a unit sphere with block-wise accuracy of 10−4.
n tstd taccu Speedup #Trunc.2.048 3.7 1.6 2.34x 42%8.192 25.7 14.7 1.75x 50%32.786 141.7 78.5 1.81x 44%131.072 809.8 404.7 2.00x 36%524.288 4313.3 2090.5 2.06x 31%2.097.152 22944.3 10478.5 2.19x 25%(time in seconds on Xeon E7-8857)
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H-LU factorization H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirelyoff H-matrix multiplications:
procedure LU(At,t , Lt,t , Ut,t )

if At,t is a block matrix then

ApplyUpdates( At,t , nonrecursive );

for 0 ≤ i < #St doLU( Ati ,ti , Lti ,ti , Uti ,ti );
for i + 1 ≤ j < #St doSolveLL( Ati ,tj , Lti ,ti , Uti ,tj );SolveUR( Atj ,ti , Ltj ,ti , Uti,ti );
for i + 1 ≤ j, ` < #St doMultiply( −1, Ltj ,ti , Uti ,t` , Atj ,t` );

else

ApplyUpdates( At,t , recursive );

At,t = Lt,tUt,t ;

procedure SolveLL(At,s, Lt,t , Bt,s)
if At,s, Lt,t , Bt,s are block matrices then

ApplyUpdates( At,s , nonrecursive );

for 0 ≤ i < #St do
for 0 ≤ j < #Ss doSolveLL( Ati ,sj , Lti,ti , Bti,sj );
for i + 1 ≤ ` < #St do

for 0 ≤ j < #Ss doMultiply( −1, Lt` ,ti , Bti,sj , At` ,sj );
else

ApplyUpdates( At,s , recursive );

Lt,tBt,s = At,s;
A direct replacement of the H-multiplication is not optimal, since it does nothandle multiple updates during H-LU.

Instead, collecting and applying updates is separated and accumulators are shifteddown level by level in the hierarchy.
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H-LU factorization H-Arithmetic with Accumulators

Results for Laplace SLP operator:
n tstd taccu Speedup #Trunc.2.048 1.0 0.7 1.46x 61%8.192 7.2 4.8 1.48x 51%32.786 42.3 23.7 1.79x 38%131.072 259.1 122.9 2.11x 27%524.288 1469.2 654.4 2.25x 21%2.097.152 7908.0 3484.9 2.27x 17%(time in seconds on Xeon E7-8857)

Results for Helmholtz SLP operator with wavenumber κ = 2:
n tstd taccu Speedup #Trunc.2.048 1.9 1.3 1.50x 54%8.192 14.5 10.6 1.37x 53%32.786 86.1 52.8 1.63x 38%131.072 537.5 284.5 1.89x 27%524.288 3101.2 1548.0 2.00x 21%(time in seconds on Xeon E7-8857)
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Complexity and Accuracy
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Complexity and Accuracy
The theoretical complexity of H-multiplication in the standard and theaccumulator based form is O

(
k2n log2 n

).
As indicated by the numerical result, the complexity of the accumulator versionseems reduced compared to the standard version.

Complexity in Practice
Multiplication H-LU
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Complexity and Accuracy
The behaviour remains with a grid resulting in a degenerate H-structure:Grid H-matrix

Multiplication H-LU
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Complexity and Accuracy
Due to the different summation order of low-rank blocks, accumulator based
H-arithmetic shows higher ranks compared to standard H-arithmetic.Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memstd Memaccu Increase32.786 385 422 9.6 %131.072 1760 1970 11.9 %524.288 8160 9210 12.9 %2.097.152 36900 41960 13.7 %(memory in MB)
ε = 10−4 Errorstd Erroraccu32.786 1.510-3 4.310-3131.072 2.410-3 6.210-3524.288 3.210-3 8.810-32.097.152 4.610-3 1.310-2(error is ||I − (LU)−1A||2) Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.The better the approximation, the less the difference.
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Task-Parallel H-LU

Kriemann/Börm, »Efficiency and Accuracy of Parallel Accumulator-based H-Arithmetic« 13



H-LU with Tasks Task-Parallel H-LU

The standard, task-based H-LU factorisation defines individual tasks for blockfactorisation, solving and updates based on the recursive H-LU algorithm modifiedto have global scope.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(Multiply( −1, Ls,t , Ut,r , As,r ));

With the level set T `(t) := {s ∈ T : level(s) = level(t)} and the index set relation
s >I t :⇔ ∀i ∈ s, j ∈ t : i > j .

Dependencies exist between factorisation and solve tasks on the same level or dueto updates tasks on different levels.
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With the level set T `(t) := {s ∈ T : level(s) = level(t)} and the index set relation
s >I t :⇔ ∀i ∈ s, j ∈ t : i > j .Dependencies exist between factorisation and solve tasks on the same level or dueto updates tasks on different levels.
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Accumulator H-LU with Tasks Task-Parallel H-LU

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r ));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ then

task( ApplyUpdates(At,s) );
for U ∈ Ut,s do

U task( ApplyUpdates(At,s) );

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task( ApplyUpdates(At,s) )

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′ );

Dependency rules:
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Accumulator H-LU with Tasks Task-Parallel H-LU

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r ));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ then

task( ApplyUpdates(At,s) );
for U ∈ Ut,s do

U task( ApplyUpdates(At,s) );

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task( ApplyUpdates(At,s) )

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′ );

Dependency rules:If updates exist, an ApplyUpdates task is required and depends on them.
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Accumulator H-LU with Tasks Task-Parallel H-LU

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r ));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task( ApplyUpdates(At,s) );
for U ∈ Ut,s do

U task( ApplyUpdates(At,s) );

if task(parent) exists then
task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task( ApplyUpdates(At,s) )

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′ );

Dependency rules:If a block has an ApplyUpdates task, so have all subblocks.
Kriemann/Börm, »Efficiency and Accuracy of Parallel Accumulator-based H-Arithmetic« 15



Accumulator H-LU with Tasks Task-Parallel H-LU

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r ));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task( ApplyUpdates(At,s) );
for U ∈ Ut,s do

U task( ApplyUpdates(At,s) );
if task(parent) exists then

task(parent) task(ApplyUpdates(At,s));

if task(LU(At,s)) or task(Solve(At,s)) exists then
task( ApplyUpdates(At,s) )

task(LU(At,s)) / task(Solve(At,s, ·, ·))
else

for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′ );

Dependency rules:Parent tasks need to be executed before son tasks.
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Accumulator H-LU with Tasks Task-Parallel H-LU

The accumulator based H-LU with tasks follows the same modifications as in therecursive case: multiplication is replaced by collecting updates and accumulatedupdates are applied following the hierarchy.
procedure DAGLU(At,t , Lt,t , Ut,t )

task(LU( At,t , Lt,t , Ut,t ));
if At,t is a block matrix then

for 0 ≤ i < #St doDAGLU( Ati ,ti , Lti ,ti , Uti ,ti );
for s ∈ T `(t), s >I t do

task(SolveLL( At,s, Lt,ti , Ut,s ));
task(SolveUR( As,t , Ls,t , Ut,t ));

for s, r ∈ T `(t), s, r >I t do
task(AddProduct(−1, Ls,ti , Uti,r , As,r ));Let Ut,s be the set of all AddProducttasks for At,s.

procedure BuildApplyTasks(At,s)
if Ut,s 6= ∅ or task(parent) exists then

task( ApplyUpdates(At,s) );
for U ∈ Ut,s do

U task( ApplyUpdates(At,s) );
if task(parent) exists then

task(parent) task(ApplyUpdates(At,s));
if task(LU(At,s)) or task(Solve(At,s)) exists then

task( ApplyUpdates(At,s) )
task(LU(At,s)) / task(Solve(At,s, ·, ·))

else
for (t′, s′) ∈ St,s doBuildApplyTasks(At′,s′ );

Dependency rules:If LU/solve task exists, it depends on the ApplyUpdates task.
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Numerical Results Task-Parallel H-LU
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Conclusion Task-Parallel H-LU

Accumulator based H-arithmetic significantly reduces the number of truncationsduring H-arithmetic with a reduction in practical complexity.Modification of existing implementations is simple and straight forward.Parallel speedup is reduced compared to standard H-arithmetic but stillsignificant overall speedup.
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