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Motivating Example
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Let A, B and C be H-matrices with the shown
structure.

For the multiplication C := A - B several updates tl
from different levels of the H-hierarchy are applied to
a single block.

As an example, the updates for Cy & are:
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Similar updates are computed for all other sub blocks of the parent block Cis.
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Similar updates are computed for all other sub blocks of the parent block Cis.

In a classical implementation, all sub multiplications sum up to 24 truncations for
the 3 low-rank blocks in Gy .
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Instead, updates are first collected for each destination block and afterwards

shifted down following the hierarchy.’
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Visualization in Science, 2017.
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Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’
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We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.
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Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’
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We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

Performing this for the full H-multiplication C := C + A - B the number of
truncations is reduced from 646 to 500.

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.
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Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let

A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.
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Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure ApPLYUPDATES(C; )
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct( Ay v, By, Crgr );
APPLYUPDATES( Cy o );

else
Cr,'; = Cf‘c + Uf‘c;
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Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure AppPLYUPDATES(C; s, type)
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct( Ay v, By, Crgr );
if type = recursive then
ApPPLYUPDATES( Gy o );

else
Ct,s = C[‘s F U[‘s;
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Numerical Results

‘H-matrix multiplication experiments are computed with H-matrix based on
Laplace SLP operator, on a unit sphere with block-wise accuracy of 10~*.

n tetd taccu Speedup  #Trunc.

2.048 37 1.6 2.34x 42%
8.192 257 14.7 1.75x 50%
32.786 141.7 785 1.81x 44%
131.072 809.8 404.7 2.00x 36%
524288 43133 20905 2.06x 31%
2097152 229443 104785 2.19x 25%

time in seconds on Xeon E7
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H-1L.U factorization

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
for 0 < i< #S; do for 0 < i< #S; do
LU( Aeto Lot U )i for 0 < j<#S; do
for i+1<j<#S; do SoLvelL( Atosi Lt Bus; )i
SOLVELL( Av . L Uty ): for i+1<0<#8 do
SOLVEUR( At/,t,' Lt/,l,r Ut,,t, ); for 0 < ] < #SS do
for i+1<j,0<#S; do MutmiPLy( =1, Le, i, Brysjo At sy )i
MuttipLy( —1, Lw, Un,r(,A,/,,é ) e
else
Lr,tBr,s = Ar,si
At,t = Lt,tUt,r;

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during H-LU.
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The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
ApPLYUPDATES( A;;, nonrecursive ); ApPLYUPDATES( A; 5, nonrecursive );

for 0 < i< #S; do for 0 < i< #S; do
LU( Aeto Lot U )i for 0 < j<#S; do
for i+1<j<#S; do SOLVELL( Ay s Liiio Brs; );

SOLVELL( A["r/, Lt[.tt B U[w[/ ),

for i+1<?0<#S; do
SoLveUR( A,/,,,, Lw, Ut )

for 0 < j<#S; do
for i+1<j,0<#S; do ADDPRODUCT(-1, Ly, 1, Brs; 1 Aty 5));
ADDPRODUCT(-1, Ly, 1, Us, 1y, Aty 1y);

else
else ApPLYUPDATES( A, 5, recursive );
APPLYUPDATES( A ¢, recursive ); LetBrs = Arsi
At,t = Lt,tUt,r;

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during H-LU.

Instead, collecting and applying updates is separated and accumulators are shifted
down level by level in the hierarchy.



H-1L.U factorization

Results for Laplace SLP operator:
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n tstd tack  Speedup  FTrunc.
2.048 10 0.7 1.46x 61%
8.192 72 48 1.48x 51%
32.786 423 237 1.79x 38%
131.072 2591 1229 2.11x 27%
524288 14692 6544 2.25x 21%
2097152 79080 34849

time tn

2.27x

17%

1ds on Xeor 8857)
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Results for Laplace SLP operator:

n tstd tack  Speedup  FTrunc.

2.048 1.0 0.7 1.46x 61%
8.192 7.2 4.8 1.48x 51%
32.786 42.3 23.7 1.79x 38%
131072 2591 1229 211 27%
524288 14692 6544 2.25x 21%
2097.152 7908.0 34849 2.27x 17%

time tn

Results for Helmholtz SLP operator with wavenumber k = 2:

n tstd tac  Speedup FTrunc.

2.048 19 13 1.50x 54%
8.192 145 10.6 1.37x 53%
32.786 86.1 52.8 1.63x 38%
131.072 5375 2845 1.89x 27%
524288 3101.2 15480 2.00x 21%

(time in seconds on Xeon
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Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the

accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.



Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

€=10"?
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106



Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

e=10"*
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106



Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

e=10"°
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106



Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice
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The behaviour remains with a grid resulting in a degenerate H-structure:
Grid ‘H-matrix
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The behaviour remains with a grid resulting in a degenerate H-structure:
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Complexity and Accuracy

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsig  Memgeey  Increase

32.786 385 422 9.6
131.072 1760 1970 1.9
524.288 8160 9210 129

2.097.152 36900 41960 137 %

(memory

° °

°

MB)
e=10"" Errorqq Erroraca

32786 1510-3  4.34p-3
131072 24490-3  6.210-3
524288 3210-3  8.810-3

2097152  4690-3  1.310-2

error is ||/ — (LU)"TAl]») Rank difference between standard and accumulator H-LU.




Complexity and Accuracy

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsig  Memgeey  Increase

32.786 613 622 15
131.072 3000 3050 1
524288 14490 14730 1

2097152 67650 68780 1

(memory

° °

@ o°

SUNN
o°

e=10"° Errorqq Erroraea

32786 4610-5  6.299-5
131072 6710-5  8.190-5
524288 9.610-5 12104

2097152 1310-4 18104

error is ||/ — (LU)"TAl]») Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.
The better the approximation, the less the difference.
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The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)
task(LU( Arr, Lee, Ure ));

if A;; is a block matrix then
for 0 <i<#S; do

DAGLU( Ayt Ley Us )i

for s 70, s >t do
task(SOLVELL( Arg, Ly, Urs ));
task(SoLVEUR( A, ¢, Lo, U ));

for s,re T, s, r>;t do
task(MuLTipLy( —1, Loy, Upr, A ));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jeti>]




H - L U W[t h Ta S kS Task-Parallel H-LU

The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)

task(LU( Av, Ly, Un ) P 4"
if A;; is a block matrix then ,)( " 7
for 0 <i<#S; do
DAGLU( Aft,flr Lt,,t,: Ut_r,)i
i "o S—
for s 70 s>, ¢t do Vv

task(SoLVELL( Ars, Ley,, Urs ));
task(SoLVEUR( A, ¢, Lo, U ));

for s,re T, s, r>;t do
task(MuLTipLy( —1, Loy, Upr, A ));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jet i>]

Dependencies exist between factorisation and solve tasks on the same level or due
to updates tasks on different levels.

d H-Arithmet



Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.

procedure DAGLU(A; ¢, Ly s, Ut y)

task(LU( Are, Lee, U )
if A;; is a block matrix then

for 0 <i<#S; do
DAGLU( Ayt Li o Us )i

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .
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Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, Ly s, Ut y)
task(LU( At Lie U )); if U # 0 then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for U €U, do
U => task( ApPLYUPDATES(Ats) );

for 0 <i<#S; do
DAGLU( Ayt Li o Us )i

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If updates exist, an APPLYUPDATES task is required and depends on them.
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Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated
updates are applied following the hierarchy.

procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU( Act, Let, Ure )); if U; s # @ or task(parent) exists then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for 0 < i< #S; do for U €U, do
U => task( ApPLYUPDATES(Ats) );

DAGLU( At .0 Lt Up);

for s T s>, t do
task(SoLvELL( Ars, L, Urs ));
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If a block has an APPLYUPDATES task, so have all subblocks.
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Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A; )

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU( Arr, Lee, Ure )); if U, s + @ or task(parent) exists then
if A;; is a block matrix then task( ApPLYUPDATES(A; <) );
for 0 <i<#S; do for UcU,. do
U == task( ApPLYUPDATES(A; ) );

DAGLU( At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SoLVeLL( Ars, Leg, Urs )i
task(SoLVEUR( Ay, Lor, Ure ));

for s,re T s r>,t do
task(ApbProoucT(—1, Ls,, Uy, r. Asr));

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
Parent tasks need to be executed before son tasks.
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Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure DAGLU(A; ¢, L¢ ¢, Usy) procedure BuiLDAPPLYTASKS(A; s)
task(LU( Ate, Let, U )); if U, s + @ or task(parent) exists then
if A is a block matrix then task( ApPLYUPDATES(A: 5) );
for 0 < i< #S; do for U €U, do
U => task( ApPLYUPDATES(Ats) );

DAGLU( At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SOLVELL( Acs, Ler, Urs ));
task(SOLVEUR( As, Lor, Use ));
if task(LU(A; ) or task(SoLVE(A; )) exists then
for s,re T, s r>;t do task( APPLYUPDATES(A;s) ) =
task(ApbProouct(—1, Ls 1, Uy r Asr)) task(LU(A;5)) / task(SoLVE(Ars, -, )
else
Let U; s be the set of all AbDPRODUCT for (¢,s)) € S,, do
BuiLbApPLYTASKS(Ay «);

tasks for Ay .

Dependency rules:
If LU/solve task exists, it depends on the AppLYUPDATES task.



Numerical Results
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COHCLUS'LO N Task-Parallel H-LU

Accumulator based H-arithmetic significantly reduces the number of truncations
during H-arithmetic with a reduction in practical complexity.

Modification of existing implementations is simple and straight forward.

Parallel speedup is reduced compared to standard H-arithmetic but still
significant overall speedup.
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