Efficiency and Accuracy of Parallel
Accumulator-based H-Arithmetic

Steffen Borm Ronald Kriemann
University of Kiel Max Planck Inst. for Math. i.t.S.

SIAM ALA18

‘H-Arithmetic with Accumulators

‘H-Arithmetic with Accumulators

Motivating Example

S 4

Let A, B and C be H-matrices with the shown
structure.

For the multiplication C := A - B several updates tl
from different levels of the H-hierarchy are applied to
a single block.

As an example, the updates for Cy & are:

3-8

@ ~[-0

e

.
]
[

Similar updates are computed for all other sub blocks of the parent block Cis.

‘H-Arithmetic with Accumulators

Motivating Example

S 4

Let A, B and C be H-matrices with the shown
structure.

For the multiplication C := A - B several updates tl
from different levels of the H-hierarchy are applied to
a single block.

As an example, the updates for Cy & are:

3-0- 0

‘ —
+

e

Similar updates are computed for all other sub blocks of the parent block Cis.

In a classical implementation, all sub multiplications sum up to 24 truncations for
the 3 low-rank blocks in Gy .

Motivating Example

‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards

shifted down following the hierarchy.’

— .

+

+

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and

Visualization in Science, 2017.

Motivating Example

‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards

shifted down following the hierarchy.’

— .

+

+

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and

Visualization in Science, 2017.

‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

AL

E*TH-D + [

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.

‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

AL

{
EE*TH-D + -
s

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.

‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . + e

{
EE*TH-D + -
o

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.

d H-Arithmetic

‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

e e B W

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
isualization in Science, 2017.
Visualization in Science, 2017

d H-Arit

‘H-Arithmetic with Accumulators

Motivating Example

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . +]

]

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.

d H-A

M Oti_vati_n g Exa m p [e ‘H-Arithmetic with Accumulators

Instead, updates are first collected for each destination block and afterwards
shifted down following the hierarchy.’

= . + yEES

]

We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per
subblock on level 4, summing up to 15 truncations for all low-rank blocks in C; s.

Performing this for the full H-multiplication C := C + A - B the number of
truncations is reduced from 646 to 500.

S, Borm, “Hierarchical matrix arithmetic with accumulated updates’, submitted to Computing and
Visualization in Science, 2017.

H

‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let

A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure ApPLYUPDATES(C;)
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct(Ay v, By, Crgr);
APPLYUPDATES(Cy o);

else
Cr,'; = Cf‘c + Uf‘c;

‘H-Arithmetic with Accumulators

Arithmetic

Let / be an index set, T(/) a cluster tree over / and T = T(/ x /) a block cluster
tree over T(/). For t € T(/) let §; denote the set of sons of t. Furthermore, let
A, B, C be H-matrices over T.

For each matrix block C;s we define an accumulator Uy s € C™° and a set P . of
pending updates. Both are initialised to zero at the start of any H-arithmetic, e.g,,
Us =0and Prs =0 forall (t,s) e T.

‘H-multiplication is split into two functions, which collect the updates and shift
them down to sub blocks:

procedure ADDPRODUCT(A;/, By, G s) procedure AppPLYUPDATES(C; s, type)
if Ai. B, C s are block matrices then if G is a block matrix then
Pis i =Pis U{(Ar; Brs)} for ' €8;,s €8s do
else Up s = Upg 4 Upslps:
Ups = Us + Ar; - Brs; for (A, Brs) €EPis, i’ €S, do

AbpProbuct(Ay v, By, Crgr);
if type = recursive then
ApPPLYUPDATES(Gy o);

else
Ct,s = C[‘s F U[‘s;

‘H-Arithmetic with Accumulators

Numerical Results

‘H-matrix multiplication experiments are computed with H-matrix based on
Laplace SLP operator, on a unit sphere with block-wise accuracy of 10~*.

n tetd taccu Speedup #Trunc.

2.048 37 1.6 2.34x 42%
8.192 257 14.7 1.75x 50%
32.786 141.7 785 1.81x 44%
131.072 809.8 404.7 2.00x 36%
524288 43133 20905 2.06x 31%
2097152 229443 104785 2.19x 25%

time in seconds on Xeon E7

‘H-Arithmetic with Accumulators

H-1L.U factorization

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
for 0 < i< #S; do for 0 < i< #S; do
LU(Aeto Lot U)i for 0 < j<#S; do
for i+1<j<#S; do SoLvelL(Atosi Lt Bus;)i
SOLVELL(Av . L Uty): for i+1<0<#8 do
SOLVEUR(At/,t,' Lt/,l,r Ut,,t,); for 0 <] < #SS do
for i+1<j,0<#S; do MutmiPLy(=1, Le, i, Brysjo At sy)i
MuttipLy(—1, Lw, Un,r(,A,/,,é) e
else
Lr,tBr,s = Ar,si
At,t = Lt,tUt,r;

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during H-LU.

H_ LU fa Cto rtzatto n ‘H-Arithmetic with Accumulators

The classical, recursive formulation of H-LU factorization consists almost entirely
off H-matrix multiplications:

procedure LU(A; ¢, L+, Usy) procedure SoLVELL (A, Lt¢, Bt s)
if A:; is a block matrix then if A, Lit, B s are block matrices then
ApPLYUPDATES(A;;, nonrecursive); ApPLYUPDATES(A; 5, nonrecursive);

for 0 < i< #S; do for 0 < i< #S; do
LU(Aeto Lot U)i for 0 < j<#S; do
for i+1<j<#S; do SOLVELL(Ay s Liiio Brs;);

SOLVELL(A["r/, Lt[.tt B U[w[/),

for i+1<?0<#S; do
SoLveUR(A,/,,,, Lw, Ut)

for 0 < j<#S; do
for i+1<j,0<#S; do ADDPRODUCT(-1, Ly, 1, Brs; 1 Aty 5));
ADDPRODUCT(-1, Ly, 1, Us, 1y, Aty 1y);

else
else ApPLYUPDATES(A, 5, recursive);
APPLYUPDATES(A ¢, recursive); LetBrs = Arsi
At,t = Lt,tUt,r;

A direct replacement of the H-multiplication is not optimal, since it does not
handle multiple updates during H-LU.

Instead, collecting and applying updates is separated and accumulators are shifted
down level by level in the hierarchy.

H-1L.U factorization

Results for Laplace SLP operator:

‘H-Arithmetic with Accumulators

n tstd tack Speedup FTrunc.
2.048 10 0.7 1.46x 61%
8.192 72 48 1.48x 51%
32.786 423 237 1.79x 38%
131.072 2591 1229 2.11x 27%
524288 14692 6544 2.25x 21%
2097152 79080 34849

time tn

2.27x

17%

1ds on Xeor 8857)

H_ LU fa Cto rtzatto n ‘H-Arithmetic with Accumulators

Results for Laplace SLP operator:

n tstd tack Speedup FTrunc.

2.048 1.0 0.7 1.46x 61%
8.192 7.2 4.8 1.48x 51%
32.786 42.3 23.7 1.79x 38%
131072 2591 1229 211 27%
524288 14692 6544 2.25x 21%
2097.152 7908.0 34849 2.27x 17%

time tn

Results for Helmholtz SLP operator with wavenumber k = 2:

n tstd tac Speedup FTrunc.

2.048 19 13 1.50x 54%
8.192 145 10.6 1.37x 53%
32.786 86.1 52.8 1.63x 38%
131.072 5375 2845 1.89x 27%
524288 3101.2 15480 2.00x 21%

(time in seconds on Xeon

Complexity and Accuracy

Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the

accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

€=10"?
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106

Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

e=10"*
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106

Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

e=10"°
Multiplication H-LU

nlog'n
=—o— Std

== Accu

101 10° 109 101 10° 106

Complexity and Accuracy

The theoretical complexity of H-multiplication in the standard and the
accumulator based form is O (kzn log2 n).

As indicated by the numerical result, the complexity of the accumulator version
seems reduced compared to the standard version.

Complexity in Practice

k=7
Multiplication ‘H-LU

nlog'n

—t— Std

== Accu

100 10° 100 10* 10° 109

I <

Complexity and Accuracy

The behaviour remains with a grid resulting in a degenerate H-structure:
Grid ‘H-matrix

Complexity and Accuracy

The behaviour remains with a grid resulting in a degenerate H-structure:

Grid

T 4 V‘V { B
//]" " | ’ | \\

&

Multiplication

nlog™n

=—— Std

== Accu

nlogn

t/n

nlogn

10* 10° 10°

1072

t/n

H-matrix

H-LU

=—— Std

== Accu

nlog™n

nlog’n

nlogn

10! 10°

106

Complexity and Accuracy

The behaviour remains with a grid resulting in a degenerate H-structure:

Grid

T

£ =

Multiplication

nlog™n

=—— Std

== Accu

t/n

nlogn

10* 10° 10°

10~

t/n

H-matrix

H-LU

=—— Std

== Accu

nlog™n

nlogn

10!

10°

106

Complexity and Accuracy

The behaviour remains with a grid resulting in a degenerate H-structure:
Grid

H-matrix

T

e=10"°
Multiplication H-LU

nlog™n

nlog™n

JE—C— Std —— Std

—= Accu == Accu

nlog*n

t/n
t/n

nlogn
nlogn

10* 100 106 10* 10° 100

Complexity and Accuracy

The behaviour remains with a grid resulting in a degenerate H-structure:

t/n

Grid

Multiplication

—t— Std

== Accu

nlog™n

nlog®n

nlogn

10*

10°

100

t/n

H-matrix

‘H-LU

=—a— Std

== Accu

nlogn

nlog?n

nlogn

10

10°

100

Complexity and Accuracy

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsig Memgeey Increase

32.786 385 422 9.6
131.072 1760 1970 1.9
524.288 8160 9210 129

2.097.152 36900 41960 137 %

(memory

° °

°

MB)
e=10"" Errorqq Erroraca

32786 1510-3 4.34p-3
131072 24490-3 6.210-3
524288 3210-3 8.810-3

2097152 4690-3 1.310-2

error is ||/ — (LU)"TAl]») Rank difference between standard and accumulator H-LU.

Complexity and Accuracy

Due to the different summation order of low-rank blocks, accumulator based
‘H-arithmetic shows higher ranks compared to standard H-arithmetic.

Also the accuracy is slightly worse compared to standard H-arithmetic.

n Memsig Memgeey Increase

32.786 613 622 15
131.072 3000 3050 1
524288 14490 14730 1

2097152 67650 68780 1

(memory

° °

@ o°

SUNN
o°

e=10"° Errorqq Erroraea

32786 4610-5 6.299-5
131072 6710-5 8.190-5
524288 9.610-5 12104

2097152 1310-4 18104

error is ||/ — (LU)"TAl]») Rank difference between standard and accumulator H-LU.

However, this effect is dependent on the predefined accuracy of the H-arithmetic.
The better the approximation, the less the difference.

Task-Parallel H-LU

H - L U W[t h Ta S kS Task-Parallel H-LU

The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)
task(LU(Arr, Lee, Ure));

if A;; is a block matrix then
for 0 <i<#S; do

DAGLU(Ayt Ley Us)i

for s 70, s >t do
task(SOLVELL(Arg, Ly, Urs));
task(SoLVEUR(A, ¢, Lo, U));

for s,re T, s, r>;t do
task(MuLTipLy(—1, Loy, Upr, A));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jeti>]

H - L U W[t h Ta S kS Task-Parallel H-LU

The standard, task-based H-LU factorisation defines individual tasks for block

factorisation, solving and updates based on the recursive H-LU algorithm modified
to have global scope.

procedure DAGLU(A:¢, Le ¢, U ¢)

task(LU(Av, Ly, Un) P 4"
if A;; is a block matrix then ,)(" 7
for 0 <i<#S; do
DAGLU(Aft,flr Lt,,t,: Ut_r,)i
i "o S—
for s 70 s>, ¢t do Vv

task(SoLVELL(Ars, Ley,, Urs));
task(SoLVEUR(A, ¢, Lo, U));

for s,re T, s, r>;t do
task(MuLTipLy(—1, Loy, Upr, A));

With the level set T/ := {s € T : level(s) = level(t)} and the index set relation
s> tevVies jet i>]

Dependencies exist between factorisation and solve tasks on the same level or due
to updates tasks on different levels.

d H-Arithmet

Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.

procedure DAGLU(A; ¢, Ly s, Ut y)

task(LU(Are, Lee, U)
if A;; is a block matrix then

for 0 <i<#S; do
DAGLU(Ayt Li o Us)i

for s T s>, t do
task(SoLvELL(Ars, L, Urs));
task(SoLVEUR(Ay, Lor, Ure));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A;)

procedure DAGLU(A; ¢, Ly s, Ut y)
task(LU(At Lie U)); if U # 0 then
if A;; is a block matrix then task(ApPLYUPDATES(A; <));
for U €U, do
U => task(ApPLYUPDATES(Ats));

for 0 <i<#S; do
DAGLU(Ayt Li o Us)i

for s T s>, t do
task(SoLvELL(Ars, L, Urs));
task(SoLVEUR(Ay, Lor, Ure));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If updates exist, an APPLYUPDATES task is required and depends on them.

Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated
updates are applied following the hierarchy.

procedure BUILDAPPLYTASKS(A;)

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU(Act, Let, Ure)); if U; s # @ or task(parent) exists then
if A;; is a block matrix then task(ApPLYUPDATES(A; <));
for 0 < i< #S; do for U €U, do
U => task(ApPLYUPDATES(Ats));

DAGLU(At .0 Lt Up);

for s T s>, t do
task(SoLvELL(Ars, L, Urs));
task(SoLVEUR(Ay, Lor, Ure));

for s,re T s r>,t do
task(ApbProouct(—1, Ls 1, Uy r Asr))

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
If a block has an APPLYUPDATES task, so have all subblocks.

Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure BUILDAPPLYTASKS(A;)

procedure DAGLU(A; ¢, L¢ ¢, Usy)
task(LU(Arr, Lee, Ure)); if U, s + @ or task(parent) exists then
if A;; is a block matrix then task(ApPLYUPDATES(A; <));
for 0 <i<#S; do for UcU,. do
U == task(ApPLYUPDATES(A;));

DAGLU(At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SoLVeLL(Ars, Leg, Urs)i
task(SoLVEUR(Ay, Lor, Ure));

for s,re T s r>,t do
task(ApbProoucT(—1, Ls,, Uy, r. Asr));

Let U; s be the set of all AbbProbucT

tasks for Ay .

Dependency rules:
Parent tasks need to be executed before son tasks.

Task-Parallel H-LU

Accumulator H-LU with Tasks

The accumulator based H-LU with tasks follows the same modifications as in the
recursive case: multiplication is replaced by collecting updates and accumulated

updates are applied following the hierarchy.
procedure DAGLU(A; ¢, L¢ ¢, Usy) procedure BuiLDAPPLYTASKS(A; s)
task(LU(Ate, Let, U)); if U, s + @ or task(parent) exists then
if A is a block matrix then task(ApPLYUPDATES(A: 5));
for 0 < i< #S; do for U €U, do
U => task(ApPLYUPDATES(Ats));

DAGLU(At .0 Lt Up);
if task(parent) exists then

for s T s>, t do
task(parent) = task(APPLYUPDATES(A; s));

task(SOLVELL(Acs, Ler, Urs));
task(SOLVEUR(As, Lor, Use));
if task(LU(A;) or task(SoLVE(A;)) exists then
for s,re T, s r>;t do task(APPLYUPDATES(A;s)) =
task(ApbProouct(—1, Ls 1, Uy r Asr)) task(LU(A;5)) / task(SoLVE(Ars, -,)
else
Let U; s be the set of all AbDPRODUCT for (¢,s)) € S,, do
BuiLbApPLYTASKS(Ay «);

tasks for Ay .

Dependency rules:
If LU/solve task exists, it depends on the AppLYUPDATES task.

Numerical Results

2AT ey 29,097,152
oo Nl —e— n=524288
| —o— n = 131.072

s 20 R ISR ™.\ S 4 SO S Y SO S S

3

S

T 18

'B]

g i

16 Rt i, .
1.4 ---
1.2- _____ R F—— FR— J— F—— %. ______ J— [A— R JI— FA—

Task-Parallel H-LU

1 4 8 12 16 20 24 28 32 36 40 44 48
cores

COHCLUS'LO N Task-Parallel H-LU

Accumulator based H-arithmetic significantly reduces the number of truncations
during H-arithmetic with a reduction in practical complexity.

Modification of existing implementations is simple and straight forward.

Parallel speedup is reduced compared to standard H-arithmetic but still
significant overall speedup.

CO n Cl_usi_o n Task-Parallel H-LU

Accumulator based H-arithmetic significantly reduces the number of truncations
during H-arithmetic with a reduction in practical complexity.

Modification of existing implementations is simple and straight forward.

Parallel speedup is reduced compared to standard H-arithmetic but still
significant overall speedup.

