## Efficiency and Accuracy of Parallel Accumulator-based $\mathcal{H}$-Arithmetic

Steffen Börm
University of Kiel

Ronald Kriemann
Max Planck Inst. for Math. i.t.S.

## SIAM ALA18


$\mathcal{H}$-Arithmetic with Accumulators

## Motivating Example

Let $A, B$ and $C$ be $\mathcal{H}$-matrices with the shown structure.

For the multiplication $C:=A \cdot B$ several updates from different levels of the $\mathcal{H}$-hierarchy are applied to a single block.

As an example, the updates for $C_{t^{\prime}, s^{\prime}}$ are:


Similar updates are computed for all other sub blocks of the parent block $C_{t, s}$.

## Motivating Example

Let $A, B$ and $C$ be $\mathcal{H}$-matrices with the shown structure.

For the multiplication $C:=A \cdot B$ several updates from different levels of the $\mathcal{H}$-hierarchy are applied to a single block.

As an example, the updates for $C_{t^{\prime}, s^{\prime}}$ are:


$\square$


Similar updates are computed for all other sub blocks of the parent block $C_{t, s}$.
In a classical implementation, all sub multiplications sum up to 24 truncations for the 3 low-rank blocks in $C_{t, s}$.

## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^0]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^1]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^2]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^3]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^4]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


[^5]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per subblock on level 4 , summing up to 15 truncations for all low-rank blocks in $C_{t, s}$.

[^6]
## Motivating Example

Instead, updates are first collected for each destination block and afterwards shifted down following the hierarchy. ${ }^{1}$


We now have 1 truncation on level 2, 2 truncations for level 3 and 4 truncations per subblock on level 4 , summing up to 15 truncations for all low-rank blocks in $C_{t, s}$.

Performing this for the full $\mathcal{H}$-multiplication $C:=C+A \cdot B$ the number of truncations is reduced from 646 to 500.

[^7]Let $I$ be an index set, $T(I)$ a cluster tree over $I$ and $T=T(I \times I)$ a block cluster tree over $T(I)$. For $t \in T(I)$ let $\mathcal{S}_{t}$ denote the set of sons of $t$. Furthermore, let $A, B, C$ be $\mathcal{H}$-matrices over $T$.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any $\mathcal{H}$-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.

## Arithmetic

Let $I$ be an index set, $T(I)$ a cluster tree over $I$ and $T=T(I \times I)$ a block cluster tree over $T(I)$. For $t \in T(I)$ let $\mathcal{S}_{t}$ denote the set of sons of $t$. Furthermore, let $A, B, C$ be $\mathcal{H}$-matrices over $T$.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any $\mathcal{H}$-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.
$\mathcal{H}$-multiplication is split into two functions, which collect the updates and shift them down to sub blocks:

```
procedure \(\operatorname{AddProduct}\left(A_{t, r}, B_{r, s}, C_{t, s}\right)\)
    if \(A_{t, r}, B_{r, s}, C_{t, s}\) are block matrices then
        \(\mathcal{P}_{t, s}:=\mathcal{P}_{t, s} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;\)
    else
        \(U_{t, s}:=U_{t, s}+A_{t, r} \cdot B_{r, s} ;\)
```

```
procedure ApplyUpdates( ( }\mp@subsup{C}{t,s}{}
    if }\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
        for t'}\mp@subsup{t}{}{\prime}\in\mp@subsup{\mathcal{S}}{t}{},\mp@subsup{s}{}{\prime}\in\mp@subsup{\mathcal{S}}{\textrm{s}}{}\mathrm{ do
            U Ut,s
            for (At,r, 的,s})\in\mp@subsup{\mathcal{P}}{t,s}{},\mp@subsup{r}{}{\prime}\in\mp@subsup{\mathcal{S}}{r}{}\mathrm{ do
            AddProduct( ( At,r,r',
            ApplyUpdates( ( }\mp@subsup{t}{\mp@subsup{t}{}{\prime}}{\prime\prime}\mp@subsup{s}{}{\prime}\mathrm{ );
    else
        Ct,s}:=\mp@subsup{C}{t,s}{}+\mp@subsup{U}{t,s}{}
```


## Arithmetic

Let $I$ be an index set, $T(I)$ a cluster tree over $I$ and $T=T(I \times I)$ a block cluster tree over $T(I)$. For $t \in T(I)$ let $\mathcal{S}_{t}$ denote the set of sons of $t$. Furthermore, let $A, B, C$ be $\mathcal{H}$-matrices over $T$.

For each matrix block $C_{t, s}$ we define an accumulator $U_{t, s} \in \mathbb{C}^{t \times s}$ and a set $\mathcal{P}_{t, s}$ of pending updates. Both are initialised to zero at the start of any $\mathcal{H}$-arithmetic, e.g., $U_{t, s}=0$ and $\mathcal{P}_{t, s}=\emptyset$ for all $(t, s) \in T$.
$\mathcal{H}$-multiplication is split into two functions, which collect the updates and shift them down to sub blocks:

```
procedure \(\operatorname{AddProduct}\left(A_{t, r}, B_{r, s}, C_{t, s}\right)\)
    if \(A_{t, r}, B_{r, s}, C_{t, s}\) are block matrices then
        \(\mathcal{P}_{t, s}:=\mathcal{P}_{t, s} \cup\left\{\left(A_{t, r}, B_{r, s}\right)\right\} ;\)
    else
        \(U_{t, s}:=U_{t, s}+A_{t, r} \cdot B_{r, s} ;\)
```

```
procedure APplyUpdates( ( }\mp@subsup{C}{t,s}{},\mathrm{ , type)
    if C}\mp@subsup{C}{t,s}{}\mathrm{ is a block matrix then
        for t'}\mp@subsup{t}{}{\prime}\in\mp@subsup{\mathcal{S}}{t}{},\mp@subsup{s}{}{\prime}\in\mp@subsup{\mathcal{S}}{\textrm{s}}{}\mathrm{ do
            U \mp@subsup{t}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}}:=\mp@subsup{U}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}+\mp@subsup{U}{t,s}{\prime}\mp@subsup{|}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}
            for (At,r, 的,s})\in\mp@subsup{\mathcal{P}}{t,s}{},\mp@subsup{r}{}{\prime}\in\mp@subsup{\mathcal{S}}{r}{}\mathrm{ do
                AddProduct( ( Att,r'r',
            if type = recursive then
            ApplyUpdates( ( }\mp@subsup{C}{\mp@subsup{t}{}{\prime},\mp@subsup{s}{}{\prime}}{\prime}\mathrm{ );
    else
        Ct,s}:=\mp@subsup{C}{t,s}{}+\mp@subsup{U}{t,si}{
```


## Numerical Results

$\mathcal{H}$-matrix multiplication experiments are computed with $\mathcal{H}$-matrix based on Laplace SLP operator, on a unit sphere with block-wise accuracy of $10^{-4}$.

| $n$ | $t_{\text {std }}$ | $t_{\mathrm{accu}}$ | Speedup | \#Trunc. |
| ---: | ---: | ---: | ---: | ---: |
| 2.048 | 3.7 | 1.6 | 2.34 x | $42 \%$ |
| 8.192 | 25.7 | 14.7 | 1.75 x | $50 \%$ |
| 32.786 | 141.7 | 78.5 | 1.81 x | $44 \%$ |
| 131.072 | 809.8 | 404.7 | 2.00 x | $36 \%$ |
| 524.288 | 4313.3 | 2090.5 | 2.06 x | $31 \%$ |
| 2.097 .152 | 22944.3 | 10478.5 | 2.19 x | $25 \%$ |
|  |  |  |  | (time in seconds on Xeon E7-8857) |

## $\mathcal{H}$-LU factorization

The classical, recursive formulation of $\mathcal{H}-\mathrm{LU}$ factorization consists almost entirely off $\mathcal{H}$-matrix multiplications:

```
procedure LU(A (A,t,},\mp@subsup{L}{t,t}{},\mp@subsup{U}{t,t}{}
    if A}\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        for 0 \leqi<#S S do
        LU( A}\mp@subsup{A}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,t,i,i}{},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{})
        for i+1\leqj<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do}
            SolveLL( }\mp@subsup{A}{\mp@subsup{t}{i}{},\mp@subsup{t}{j}{}}{},\mp@subsup{L}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i}{\prime},\mp@subsup{t}{j}{}}{})
            SolveUR( }\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{},}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{})
        for i+1\leqj,\ell<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do}
            Multiply( -1, Lt L,t,i,},\mp@subsup{U}{\mp@subsup{t}{i}{},\mp@subsup{t}{e}{}}{},\mp@subsup{A}{\mp@subsup{t}{j}{},\mp@subsup{t}{e}{}}{})
    else
    At,t}=\mp@subsup{L}{t,t}{}\mp@subsup{U}{t,t;}{
```

```
procedure \(\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)\)
    if \(A_{t, s,}, L_{t, t}, B_{t, s}\) are block matrices then
```

```
        for \(0 \leq i<\# \mathcal{S}_{t}\) do
for \(0 \leq j<\# \mathcal{S}_{s}\) do
\(\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)\);
for \(i+1 \leq \ell<\# \mathcal{S}_{t}\) do
\(\quad\) for \(0 \leq j<\# \mathcal{S}_{s}\) do
\(\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)\);
```

        for \(0 \leq i<\# \mathcal{S}_{t}\) do
    for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{SoLVELL}\left(A_{t, s,}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
$\quad$ for $0 \leq j<\# \mathcal{S}_{s}$ do
$\quad \operatorname{MuLTPLY}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{t, s j}}\right)$;
else
$L_{t, t} B_{t, s}=A_{t, s i}$

```

A direct replacement of the \(\mathcal{H}\)-multiplication is not optimal, since it does not handle multiple updates during \(\mathcal{H}\)-LU.

\section*{\(\mathcal{H}\)-LU factorization}

The classical, recursive formulation of \(\mathcal{H}\)-LU factorization consists almost entirely off \(\mathcal{H}\)-matrix multiplications:
```

procedure LU(A (A,t, , Lt,t,},\mp@subsup{U}{t,t}{}
if A}\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
ApplyUpdates( ( }\mp@subsup{t}{t,t}{}\mathrm{ , nonrecursive );
for 0}\leqi<\#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
LU( A A
for i+1\leqj<\#\mp@subsup{S}{t}{}}\mathrm{ do

```

```

            SolveUR( A At,\mp@subsup{t}{i}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{});
            for i+1\leqj,\ell<#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do}
            AddProduct(-1, L Lt, ,tiv},\mp@subsup{U}{\mp@subsup{t}{i}{},\mp@subsup{t}{e}{}}{},\mp@subsup{A}{\mp@subsup{t}{j}{\prime},\mp@subsup{t}{e}{}}{})
    else
        ApplyUpdates( }\mp@subsup{A}{t,t}{}\mathrm{ ,recursive );
        At,t}=\mp@subsup{L}{t,t}{}\mp@subsup{U}{t,t}{
    ```
```

procedure $\operatorname{SolvELL}\left(A_{t, s}, L_{t, t}, B_{t, s}\right)$
if $A_{t, s}, L_{t, t}, B_{t, s}$ are block matrices then
ApplyUpdates( $A_{t, s}$, nonrecursive );
for $0 \leq i<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
SolveLL( $\left.A_{t_{i}, s_{j}}, L_{t_{i}, t_{i}}, B_{t_{i}, s_{j}}\right)$;
for $i+1 \leq \ell<\# \mathcal{S}_{t}$ do
for $0 \leq j<\# \mathcal{S}_{s}$ do
$\operatorname{AddProduct}\left(-1, L_{t_{e}, t_{i}}, B_{t_{i}, s_{j}}, A_{t_{e}, s_{j}}\right) ;$
else
ApplyUpdates( $A_{t, s}$, recursive );
$L_{t, t} B_{t, s}=A_{t, s} ;$

```

A direct replacement of the \(\mathcal{H}\)-multiplication is not optimal, since it does not handle multiple updates during \(\mathcal{H}\)-LU.

Instead, collecting and applying updates is separated and accumulators are shifted down level by level in the hierarchy.

\section*{\(\mathcal{H}\)-LU factorization}

Results for Laplace SLP operator:
\begin{tabular}{rrrrr}
\multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(t_{\text {std }}\)} & \multicolumn{1}{c}{\(t_{\text {accu }}\)} & Speedup & \#Trunc. \\
\hline 2.048 & 1.0 & 0.7 & \(1.46 x\) & \(61 \%\) \\
8.192 & 7.2 & 4.8 & \(1.48 x\) & \(51 \%\) \\
32.786 & 42.3 & 23.7 & \(1.79 x\) & \(38 \%\) \\
131.072 & 259.1 & 122.9 & \(2.11 x\) & \(27 \%\) \\
524.288 & 1469.2 & 654.4 & \(2.25 x\) & \(21 \%\) \\
2.097 .152 & 7908.0 & 3484.9 & \(2.27 x\) & \(17 \%\)
\end{tabular}
(time in seconds on Xeon E7-8857)

\section*{\(\mathcal{H}\)-LU factorization}

Results for Laplace SLP operator:
\begin{tabular}{rrrrr}
\multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(t_{\text {std }}\)} & \multicolumn{1}{c}{\(t_{\text {accu }}\)} & Speedup & \#Trunc. \\
\hline 2.048 & 1.0 & 0.7 & \(1.46 x\) & \(61 \%\) \\
8.192 & 7.2 & 4.8 & \(1.48 x\) & \(51 \%\) \\
32.786 & 42.3 & 23.7 & \(1.79 x\) & \(38 \%\) \\
131.072 & 259.1 & 122.9 & \(2.11 x\) & \(27 \%\) \\
524.288 & 1469.2 & 654.4 & \(2.25 x\) & \(21 \%\) \\
2.097 .152 & 7908.0 & 3484.9 & \(2.27 x\) & \(17 \%\)
\end{tabular}
(time in seconds on Xeon E7-8857)
Results for Helmholtz SLP operator with wavenumber \(k=2\) :
\begin{tabular}{rrrrr}
\multicolumn{1}{c}{\(n\)} & \multicolumn{1}{c}{\(t_{\text {std }}\)} & \multicolumn{1}{c}{\(t_{\text {accu }}\)} & Speedup & \#Trunc. \\
\hline 2.048 & 1.9 & 1.3 & \(1.50 x\) & \(54 \%\) \\
8.192 & 14.5 & 10.6 & \(1.37 x\) & \(53 \%\) \\
32.786 & 86.1 & 52.8 & \(1.63 x\) & \(38 \%\) \\
131.072 & 537.5 & 284.5 & \(1.89 x\) & \(27 \%\) \\
524.288 & 3101.2 & 1548.0 & \(2.00 x\) & \(21 \%\)
\end{tabular}

\section*{Complexity and Accuracy}

\section*{Complexity and Accuracy}

The theoretical complexity of \(\mathcal{H}\)-multiplication in the standard and the accumulator based form is \(\mathcal{O}\left(k^{2} n \log ^{2} n\right)\).

As indicated by the numerical result, the complexity of the accumulator version seems reduced compared to the standard version.

\section*{Complexity and Accuracy}

The theoretical complexity of \(\mathcal{H}\)-multiplication in the standard and the accumulator based form is \(\mathcal{O}\left(k^{2} n \log ^{2} n\right)\).

As indicated by the numerical result, the complexity of the accumulator version seems reduced compared to the standard version.

\section*{Complexity in Practice}
\[
\varepsilon=10^{-2}
\]


\section*{Complexity and Accuracy}

The theoretical complexity of \(\mathcal{H}\)-multiplication in the standard and the accumulator based form is \(\mathcal{O}\left(k^{2} n \log ^{2} n\right)\).

As indicated by the numerical result, the complexity of the accumulator version seems reduced compared to the standard version.

\section*{Complexity in Practice}
\[
\varepsilon=10^{-4}
\]


\section*{Complexity and Accuracy}

The theoretical complexity of \(\mathcal{H}\)-multiplication in the standard and the accumulator based form is \(\mathcal{O}\left(k^{2} n \log ^{2} n\right)\).

As indicated by the numerical result, the complexity of the accumulator version seems reduced compared to the standard version.

\section*{Complexity in Practice}
\[
\varepsilon=10^{-6}
\]


\section*{Complexity and Accuracy}

The theoretical complexity of \(\mathcal{H}\)-multiplication in the standard and the accumulator based form is \(\mathcal{O}\left(k^{2} n \log ^{2} n\right)\).

As indicated by the numerical result, the complexity of the accumulator version seems reduced compared to the standard version.

\section*{Complexity in Practice}
\[
k=7
\]



\section*{Complexity and Accuracy}

The behaviour remains with a grid resulting in a degenerate \(\mathcal{H}\)-structure:

\(\mathcal{H}\)-matrix


\section*{Complexity and Accuracy}

The behaviour remains with a grid resulting in a degenerate \(\mathcal{H}\)-structure:

\(\mathcal{H}\)-matrix

\[
\varepsilon=10^{-2}
\]



\section*{Complexity and Accuracy}

The behaviour remains with a grid resulting in a degenerate \(\mathcal{H}\)-structure:


\section*{Complexity and Accuracy}

The behaviour remains with a grid resulting in a degenerate \(\mathcal{H}\)-structure:

\(\mathcal{H}\)-matrix

\[
\varepsilon=10^{-6}
\]



\section*{Complexity and Accuracy}

The behaviour remains with a grid resulting in a degenerate \(\mathcal{H}\)-structure:

Grid

\[
k=7
\]
\(\mathcal{H}\)-matrix

\(\mathcal{H}\)-LU

\section*{Complexity and Accuracy}

Due to the different summation order of low-rank blocks, accumulator based \(\mathcal{H}\)-arithmetic shows higher ranks compared to standard \(\mathcal{H}\)-arithmetic.

Also the accuracy is slightly worse compared to standard \(\mathcal{H}\)-arithmetic.
\begin{tabular}{|c|c|c|c|}
\hline \(n\) & Mem \(_{\text {std }}\) & Memaccu & Increase \\
\hline 32.786 & 385 & 422 & 9.6 \% \\
\hline 131.072 & 1760 & 1970 & 11.9 \% \\
\hline 524.288 & 8160 & 9210 & 12.9 \% \\
\hline 2.097.152 & 36900 & 41960 & \[
13.7 \text { \% }
\] \\
\hline \(\varepsilon=10^{-4}\) & Error \(_{\text {std }}\) & Erroraccu & \\
\hline 32.786 & \(1.5{ }_{10}-3\) & \(4.3{ }_{10}-3\) & \\
\hline 131.072 & \(2.410-3\) & \(6.210-3\) & \\
\hline 524.288 & \(3.210-3\) & \(8.810-3\) & \\
\hline 2.097.152 & \(4.6{ }_{10}-3\) & \(1.3{ }_{10}-2\) & \\
\hline
\end{tabular}


Rank difference between standard and accumulator \(\mathcal{H}\)-LU.

\section*{Complexity and Accuracy}

Due to the different summation order of low-rank blocks, accumulator based \(\mathcal{H}\)-arithmetic shows higher ranks compared to standard \(\mathcal{H}\)-arithmetic.

Also the accuracy is slightly worse compared to standard \(\mathcal{H}\)-arithmetic.
\begin{tabular}{|c|c|c|c|}
\hline n & Memstd & Memaccu & Increase \\
\hline 32.786 & 613 & 622 & 1.5 \% \\
\hline 131.072 & 3000 & 3050 & 1.7 \% \\
\hline 524.288 & 14490 & 14730 & 1.7 \% \\
\hline 2.097.152 & 67650 & 68780 & \[
\begin{array}{r}
1.7 \% \\
\text { (memory in MB) }
\end{array}
\] \\
\hline \(\varepsilon=10^{-6}\) & Error \(_{\text {std }}\) & Error \(_{\text {accu }}\) & \\
\hline 32.786 & \(4.6{ }_{10}-5\) & \(6.210-5\) & \\
\hline 131.072 & \(6.7{ }_{10}-5\) & \(8.1_{10}-5\) & \\
\hline 524.288 & \(9.6{ }_{10}-5\) & \(1.2{ }_{10}-4\) & \\
\hline 2.097 .152 & \(1.3{ }_{10}-4\) & \(1.81_{10-4}\) &  \\
\hline
\end{tabular}


Rank difference between standard and accumulator \(\mathcal{H}\)-LU.

However, this effect is dependent on the predefined accuracy of the \(\mathcal{H}\)-arithmetic. The better the approximation, the less the difference.

\section*{Task-Parallel \(\mathcal{H}\)-LU}

\section*{\(\mathcal{H}-L U\) with Tasks}

The standard, task-based \(\mathcal{H}\)-LU factorisation defines individual tasks for block factorisation, solving and updates based on the recursive \(\mathcal{H}\)-LU algorithm modified to have global scope.
```

procedure DAGLU(A}\mp@subsup{A}{t,t}{},\mp@subsup{L}{t,t}{},\mp@subsup{U}{t,t}{}
task(LU( ( At,t , L L,t,},\mp@subsup{U}{t,t}{}))
if }\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
for 0}\leqi<\#\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
DAGLU( }\mp@subsup{A}{\mp@subsup{t}{i}{},\mp@subsup{t}{i}{}}{},\mp@subsup{L}{\mp@subsup{t}{i}{},\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i}{},\mp@subsup{t}{i}{}}{})
for }s\in\mp@subsup{T}{}{\ell(t)},s>\mathrm{ । t do
task(SolveLL( }\mp@subsup{A}{t,s}{},\mp@subsup{L}{t,t,t}{},\mp@subsup{U}{t,s}{}))
task(SolveUR( }\mp@subsup{A}{s,t}{},\mp@subsup{L}{s,t}{},\mp@subsup{U}{t,t}{}))
for s,r\in T }\mp@subsup{}{}{(t)},s,r>>1t d
task(Multiply( -1, Ls,t , U Ut,r,},\mp@subsup{A}{s,r}{}))

```


With the level set \(T^{\ell(t)}:=\{s \in T: \operatorname{level}(s)=\) level \((t)\}\) and the index set relation \(s>/ t: \Leftrightarrow \forall i \in s, j \in t: i>j\).

\section*{\(\mathcal{H}\)-LU with Tasks}

The standard, task-based \(\mathcal{H}\)-LU factorisation defines individual tasks for block factorisation, solving and updates based on the recursive \(\mathcal{H}\)-LU algorithm modified to have global scope.


With the level set \(T^{\ell(t)}:=\{s \in T\) : level \((s)=\) level \((t)\}\) and the index set relation \(s>_{I} t: \Leftrightarrow \forall i \in s, j \in t: i>j\).

Dependencies exist between factorisation and solve tasks on the same level or due to updates tasks on different levels.

\section*{Accumulator \(\mathcal{H}\)-LU with Tasks}

The accumulator based \(\mathcal{H}\)-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.

```

    task(LU( A At,t,Lt,t, 的,t ));
    if }\mp@subsup{A}{t,t}{}\mathrm{ is a block matrix then
        for 0\leqi<#S St do
            DAGLU( }\mp@subsup{A}{t,t,t}{},\mp@subsup{L}{t,\mp@subsup{t}{i}{}}{},\mp@subsup{U}{\mp@subsup{t}{i,t}{},\mp@subsup{t}{i}{}}{})
    for }s\in\mp@subsup{T}{}{\ell(t)},s>>,t\mathrm{ do
        task(SolveLL( ( At,s,
        task(SolveUR( }\mp@subsup{A}{s,t}{},\mp@subsup{L}{s,t}{\prime},\mp@subsup{U}{t,t}{}))
    for s,r r T Tl(t),s,r>,t do
        task(AddProduct(-1, L Ls,ti,},\mp@subsup{U}{t,r,r}{},\mp@subsup{A}{s,r}{}))
    ```

Let \(\mathcal{U}_{t, s}\) be the set of all AddProduct tasks for \(A_{t, s}\).

\section*{Accumulator \(\mathcal{H}\)-LU with Tasks}

The accumulator based \(\mathcal{H}\)-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.
```

procedure $\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)$
$\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)$;
if $A_{t, t}$ is a block matrix then
for $0 \leq i<\# \mathcal{S}_{t}$ do
$\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;$
for $s \in T^{\ell(t)}, s>_{1} t$ do
$\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)$;
$\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)$;
for $s, r \in T^{\ell(t)}, s, r>$, $t$ do
$\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;$

```

Let \(\mathcal{U}_{t, s}\) be the set of all AddProduct tasks for \(A_{t, s}\).
procedure BuildApplyTasks \(\left(A_{t, s}\right)\)
    if \(\mathcal{U}_{t, s} \neq \emptyset\) then
        \(\operatorname{task}\left(\operatorname{Apply}\right.\) Ppdates \(\left.^{\left(A_{t, s}\right)}\right)\);
        for \(U \in \mathcal{U}_{t, s}\) do
            \(U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right.\) );

Dependency rules:
If updates exist, an ApplyUpdates task is required and depends on them.

\section*{Accumulator \(\mathcal{H}\)-LU with Tasks}

The accumulator based \(\mathcal{H}\)-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.
```

procedure $\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)$
$\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)$;
if $A_{t, t}$ is a block matrix then
for $0 \leq i<\# \mathcal{S}_{t}$ do
$\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;$
for $s \in T^{\ell(t)}, s>_{1} t$ do
$\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)$;
$\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)$;
for $s, r \in T^{\ell(t)}, s, r>$, $t$ do
$\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;$

```

Let \(\mathcal{U}_{t, s}\) be the set of all AddProduct tasks for \(A_{t, s}\).
procedure BuildApplyTasks \(\left(A_{t, s}\right)\)
    if \(\mathcal{U}_{t, s} \neq \emptyset\) or task(parent) exists then
        task ( ApplyUpdates \(\left(A_{t, s}\right)\) );
        for \(U \in \mathcal{U}_{t, s}\) do
            \(U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right) ;\)

Dependency rules:
If a block has an ApplyUpdates task, so have all subblocks.

\section*{Accumulator \(\mathcal{H}\)-LU with Tasks}

The accumulator based \(\mathcal{H}\)-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.
```

procedure $\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)$
$\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)$;
if $A_{t, t}$ is a block matrix then
for $0 \leq i<\# \mathcal{S}_{t}$ do
$\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;$
for $s \in T^{\ell(t)}, s>_{1} t$ do
$\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)$;
$\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)$;
for $s, r \in T^{\ell(t)}, s, r>, t$ do
$\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;$

```

Let \(\mathcal{U}_{t, s}\) be the set of all AddProduct tasks for \(A_{t, s}\).
procedure BuildApplyTasks \(\left(A_{t, s}\right)\)
    if \(\mathcal{U}_{t, s} \neq \emptyset\) or task(parent) exists then
        task ( ApplyUpdates \(\left(A_{t, s}\right)\) );
        for \(U \in \mathcal{U}_{t, s}\) do
            \(U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right) ;\)
    if task(parent) exists then
        task(parent) \(\rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right)\);

Dependency rules:
Parent tasks need to be executed before son tasks.

\section*{Accumulator \(\mathcal{H}\)-LU with Tasks}

The accumulator based \(\mathcal{H}\)-LU with tasks follows the same modifications as in the recursive case: multiplication is replaced by collecting updates and accumulated updates are applied following the hierarchy.
```

procedure $\operatorname{DAGLU}\left(A_{t, t}, L_{t, t}, U_{t, t}\right)$
$\operatorname{task}\left(L U\left(A_{t, t}, L_{t, t}, U_{t, t}\right)\right)$;
if $A_{t, t}$ is a block matrix then
for $0 \leq i<\# \mathcal{S}_{t}$ do
$\operatorname{DAGLU}\left(A_{t_{i}, t_{i}}, L_{t_{i}, t_{i}}, U_{t_{i}, t_{i}}\right) ;$
for $s \in T^{\ell(t)}, s>_{1} t$ do
$\operatorname{task}\left(\operatorname{SolveLL}\left(A_{t, s}, L_{t, t, i}, U_{t, s}\right)\right)$;
$\operatorname{task}\left(\operatorname{Solve} U R\left(A_{s, t}, L_{s, t}, U_{t, t}\right)\right)$;
for $s, r \in T^{\ell(t)}, s, r>, t$ do
$\operatorname{task}\left(\operatorname{AddProduct}\left(-1, L_{s, t}, U_{t_{i}, r}, A_{s, r}\right)\right) ;$

```

Let \(\mathcal{U}_{t, s}\) be the set of all AddProduct tasks for \(A_{t, s}\).
procedure BuildApplyTasks \(\left(A_{t, s}\right)\)
    if \(\mathcal{U}_{t, s} \neq \emptyset\) or task(parent) exists then
        task ( ApplyUpdates \(\left(A_{t, s}\right)\) );
        for \(U \in \mathcal{U}_{t, s}\) do
        \(U \rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right.\) );
    if task(parent) exists then
        task(parent) \(\rightarrow \operatorname{task}\left(\operatorname{ApplyUpdates}\left(A_{t, s}\right)\right)\);
    if \(\operatorname{task}\left(\operatorname{LU}\left(A_{t, s}\right)\right)\) or \(\operatorname{task}\left(\operatorname{Solve}\left(A_{t, s}\right)\right)\) exists then
        task( ApplyUpdates \(\left.\left(A_{t, s}\right)\right) \rightarrow\)
                \(\operatorname{task}\left(\operatorname{LU}\left(A_{t, s}\right)\right) / \operatorname{task}\left(\operatorname{Solve}\left(A_{t, s}, \cdot, \cdot\right)\right)\)
    else
        for \(\left(t^{\prime}, s^{\prime}\right) \in \mathcal{S}_{t, s}\) do
        BuildApplyTasks \(\left(A_{t^{\prime}, s^{\prime}}\right)\);

Dependency rules:
If LU/solve task exists, it depends on the ApplyUpdates task.

\section*{Numerical Results}


\section*{Conclusion}

Accumulator based \(\mathcal{H}\)-arithmetic significantly reduces the number of truncations during \(\mathcal{H}\)-arithmetic with a reduction in practical complexity.

Modification of existing implementations is simple and straight forward.
Parallel speedup is reduced compared to standard \(\mathcal{H}\)-arithmetic but still significant overall speedup.

\section*{Conclusion}

Accumulator based \(\mathcal{H}\)-arithmetic significantly reduces the number of truncations during \(\mathcal{H}\)-arithmetic with a reduction in practical complexity.

Modification of existing implementations is simple and straight forward.
Parallel speedup is reduced compared to standard \(\mathcal{H}\)-arithmetic but still significant overall speedup.
```


[^0]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^1]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^2]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^3]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^4]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^5]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^6]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

[^7]:    ${ }^{1}$ S. Börm, "Hierarchical matrix arithmetic with accumulated updates", submitted to Computing and Visualization in Science, 2017.

