
1

Parallel Algorithms for H-matrices

• Definitions

• Load balancing

• Matrix-Vector-Multiplication

• Matrix-Multiplication

• Matrix-Inversion

2

Definitions

• Let I be an indexset,

• TI is a clustertree over I ,

• TI×I is a block-clustertree defined by TI and some adm. criterion.

• for all nodes t ∈ TI×I let S(t) be the sons of t,

• L(TI×I) denotes the set of leafs of TI×I with N = |L(TI×I)|

• p ≥ 1 is the number of processors with p ≪ N

Goal

• parallelise building of H-matrix and H-matrix-arithmetics

• memory and computation should be balanced among processors

• algorithms should support wide range of machines (shared- and distributed-memory)

3

Load-Balancing

• data-based balancing:

– let c : TI×I → R+ be a cost-function,

– we are looking for a function

d : TI×I → {−1, 0, . . . , p − 1}

such that

max
i<p

∑

t∈L(TI×I) : d(t)=i

c(t)

is minimised.

– restriction: ∀ t ∈ TI×I , t
′ ∈ S(t) : d(t) 6= −1 =⇒ d(t′) = d(t)

• computation-based balancing:

– cost-function c defined over operations

– same min-max-problem

– problem: definition of cost-function

4

Scheduling-Algorithms

• LPT-list-scheduling :

– works on set of items (matrix-blocks, operations),

– order items according to costs

– schedule items in ordered list to processor with minimal costs,

–
(

4
3 − 1

3p

)

-approximation scheme,

– complexity: O(n log n + np), where n is the number of items

• Sequence-partitioning :

– works on sequence (array) of items,

– partition sequence into sub-sequences such that costs of most expensive sub-sequence is

minimised,

– problem can be solved in O(np)

– can be approximated by greedy-algorithm in less time

– in data-based balancing: with correct ordering of blocks, we have data-locality

5

Examples for Data-Based-Balancing

LPT Sequence-part. 1 Sequence-part. 2

6

Matrix-Vector-Multiplication

• want to compute y = Ax, where A is a H-matrix,

• for all leafs T ∈ L(TI×I) let MA(t) denote the corresponding matrix-block in A,

• Algorithm for processor i:

each proc has copy of x and y;

for all t ∈ L(TI×I) do

if d(t) = i then multiply MA(t) with x;

scatter local copy to all processors;

add copies from other processors to local copy;

• not perfect scaling because whole vector must be transferred and added on each processor

• solution: with data-locality, only store part of vector on each processor

7

Matrix-Matrix-Multiplication

• Want to compute C = AB, where A, B and C are H-matrices.

Shared-Memory

1. data-based balancing:

• distribute destination-matrix C

• use serial algorithm on each processor but only work on local part of block-clustertree

2. computation-based balancing:

• simulate multiplication (store list of block-multiplications)

• distribute list of block-multiplications with the restriction that each dest-block is only on one

processor

• do block-multiplications assigned to each processor

• problems: definition of cost-function, how to handle blocked destination-blocks

8

Numerical Results

• partitioning from 2D-FEM on unit-square, constant rank 5, constant filling

• times in seconds

dof / p 1 2 3 4 5 6 7 8

249.6 123.8 86.0 66.7 54.3 44.9 39.0 37.1

4096 123.3 83.5 63.6 50.5 43.0 36.1 28.7

(2.0/2.0) (2.9/3.0) (3.7/3.9) (4.6/4.9) (5.5/5.8) (6.4/6.9) (6.7/8.7)

2175.5 1465.4 751.6 576.3 468.6 410.9 348.7 309.5

16384 1106.4 725.2 573.0 444.2 375.1 314.2 265.1

(1.5/2.0) (2.9/3.0) (3.8/3.8) (4.6/4.9) (5.3/5.8) (6.2/6.9) (7.0/8.2)

9

Distributed Memory

• Problem: how to handle communication and when to synchronise

• BSP-computation:

– one step of a BSP-computation:

∗ local computation

∗ communication

∗ synchronisation

• BSP-algorithm for matrix-multiplication:

– use computation-based balancing

– simulate multiplication

– partition local operations into steps (balanced among processors)

– step:

∗ transfer matrix-blocks needed for local operations

∗ do multiplications

∗ transfer results

• algorithm allows to control amount of communication by choosing number of steps

10

Matrix-Inversion

Assume following structure of H-matrices:

A =





A0 A1

A2 A3



 .

Using the Schur-complement the inverse of A is:

A−1 =





A−1
0 + A−1

0 A1S
−1A2A

−1
0 −A−1

0 A1S
−1

−S−1A2A
−1
0 S−1





with

S = A3 − A2A
−1
0 A1.

11

The algorithm for inversion is:

procedure invert(A, C, T)

if A is dense then C = A−1;

else

invert(A0, C0, T0);

T1 = C0A1; T2 = A2C0; { mult. in parallel }

A3 = A3 − A2T1;

invert(A3, C3, T3); { build Schur-compl. }

C1 = −T1C3; C2 = −C3T2; { mult. in parallel }

C0 = C0 − T1C2;

endif ; end ;

• only minimal internal parallelity

• therefore only multiplications can be parallelised

• needs fast online-scheduling

• problem: cost-function for matrix-multiplication is expansive

