Parallel Algorithms for H-matrices I

Definitions
Load balancing

Matrix-Vector-Multiplication

Matrix-Multiplication

Matrix-Inversion

Definitions '

Let / be an indexset,

1’7 is a clustertree over I,

177« 1 is a block-clustertree defined by 77 and some adm. criterion.
for all nodes t € Ty« let S(t) be the sons of t,

L(Ty« 1) denotes the set of leafs of T« with N = |L(T7«7)|

e p > 1is the number of processors with p < N

Goal

e parallelise building of H-matrix and H-matrix-arithmetics
e memory and computation should be balanced among processors

e algorithms should support wide range of machines (shared- and distributed-memory)

Load-Balancing '

e data-based balancing:
— letc : Tr«; — R4 be a cost-function,

— we are looking for a function
dIT]X[— {—1,0,...,]9—1}

such that

max Z c(t)

P e L(Tron) : d(t)=i
IS minimised.
— restriction: Vt € Tr,t' € S(t) : d(t) # -1 = d(t') = d(t)
e computation-based balancing:
— cost-function ¢ defined over operations
— same min-max-problem

— problem: definition of cost-function

Scheduling-Algorithms

e |PT-list-scheduling :
works on set of items (matrix-blocks, operations),
order items according to costs
schedule items in ordered list to processor with minimal costs,

(g — %)-approxmatlon scheme,

complexity: O(nlogn + np), where n is the number of items

® Sequence-partitioning :
— works on sequence (array) of items,

partition sequence into sub-sequences such that costs of most expensive sub-sequence is

minimised,
problem can be solved in O(np)
can be approximated by greedy-algorithm in less time

in data-based balancing: with correct ordering of blocks, we have data-locality

(@)]
§=
Q
c
fa
@©
o
e
]
2}
@©
o
g
©
(@]
| -
o
y—_
%
Q
Q.
&
@
X
Ll

Sequence-part. 2

Sequence-part. 1

Matrix-Vector-Multiplication '

e want to compute y = Ax, where A is a H-matrix,

o forallleafs T € L(I7« 1) let M 4(t) denote the corresponding matrix-block in A,

e Algorithm for processor i:

each proc has copy of x and y;
forall t € L(Trx1) do
if d(t) = 1 then multiply M (%) with x;

scatter local copy to all processors;

add copies from other processors to local copy;

e not perfect scaling because whole vector must be transferred and added on each processor

e solution: with data-locality, only store part of vector on each processor

Matrix-Matrix-Multiplication '

e Want to compute C' = AB, where A, B and C are H-matrices.

Shared-Memory

1. data-based balancing:
e distribute destination-matrix C'

e use serial algorithm on each processor but only work on local part of block-clustertree

2. computation-based balancing:

e simulate multiplication (store list of block-multiplications)

e distribute list of block-multiplications with the restriction that each dest-block is only on one

processor
e do block-multiplications assigned to each processor

e problems: definition of cost-function, how to handle blocked destination-blocks

Numerical Results

e partitioning from 2D-FEM on unit-square, constant rank 5, constant filling

e times in seconds

2

3

4

5

6

v

8

123.8
123.3
(2.0/2.0)

86.0
83.5
(2.9/3.0)

66.7
63.6
(3.7/3.9)

54.3
50.5
(4.6/4.9)

44.9
43.0
(5.5/5.8)

39.0
36.1
(6.4/6.9)

37.1
28.7
(6.7/8.7)

1465.4
1106.4

(1.5/2.0)

751.6
725.2
(2.9/3.0)

576.3
573.0
(3.8/3.8)

468.6
444.2
(4.6/4.9)

410.9
375.1
(5.3/5.8)

348.7
314.2
(6.2/6.9)

309.5
265.1
(7.0/8.2)

Distributed Memory

e Problem: how to handle communication and when to synchronise

e BSP-computation:

— one step of a BSP-computation:

* local computation
* communication

* synchronisation
e BSP-algorithm for matrix-multiplication:
use computation-based balancing
simulate multiplication
partition local operations into steps (balanced among processors)
step:
* transfer matrix-blocks needed for local operations

* do multiplications

* transfer results

e algorithm allows to control amount of communication by choosing number of steps

Matrix-Inversion '

Assume following structure of H-matrices:

Ao‘z‘h
4o | A

A=

Using the Schur-complement the inverse of A is:

ot (A AT AT A A4S

_ 5 1A, AT G

S = Az — Ay A Ay

10

The algorithm for inversion is:

procedure invert(A, C,T)
it Aisdensethen C = A~ 1:
else
invert(Ao, Co, 10);
Ty = CoA1: Ty = AxCo; { mult. in parallel }
A3 = A3 — AxTh;
invert(As, C3,T3); { build Schur-compl. }

Ci1 = —-T1C3;,Cy = —C3T5; { mult. in parallel }
Co = Co — T1C73;

endif ; end;

only minimal internal parallelity
therefore only multiplications can be parallelised

needs fast online-scheduling

problem: cost-function for matrix-multiplication is expansive

11

