Parallel Algorithms for \mathcal{H}-matrices

- Definitions
- Load balancing
- Matrix-Vector-Multiplication
- Matrix-Multiplication
- Matrix-Inversion

Definitions

- Let I be an indexset,
- T_{I} is a clustertree over I,
- $T_{I \times I}$ is a block-clustertree defined by T_{I} and some adm. criterion.
- for all nodes $t \in T_{I \times I}$ let $S(t)$ be the sons of t,
- $L\left(T_{I \times I}\right)$ denotes the set of leafs of $T_{I \times I}$ with $N=\left|L\left(T_{I \times I}\right)\right|$
- $p \geq 1$ is the number of processors with $p \ll N$

Goal

- parallelise building of \mathcal{H}-matrix and \mathcal{H}-matrix-arithmetics
- memory and computation should be balanced among processors
- algorithms should support wide range of machines (shared- and distributed-memory)

Load-Balancing

- data-based balancing:
- let $c: T_{I \times I} \rightarrow \mathbb{R}_{+}$be a cost-function,
- we are looking for a function

$$
d: T_{I \times I} \rightarrow\{-1,0, \ldots, p-1\}
$$

such that

$$
\max _{i<p} \sum_{t \in L\left(T_{I \times I}\right): d(t)=i} c(t)
$$

is minimised.

- restriction: $\forall t \in T_{I \times I}, t^{\prime} \in S(t): d(t) \neq-1 \Longrightarrow d\left(t^{\prime}\right)=d(t)$
- computation-based balancing:
- cost-function c defined over operations
- same min-max-problem
- problem: definition of cost-function

Scheduling-Algorithms

- LPT-list-scheduling :
- works on set of items (matrix-blocks, operations),
- order items according to costs
- schedule items in ordered list to processor with minimal costs,
- $\left(\frac{4}{3}-\frac{1}{3 p}\right)$-approximation scheme,
- complexity: $\mathcal{O}(n \log n+n p)$, where n is the number of items
- Sequence-partitioning :
- works on sequence (array) of items,
- partition sequence into sub-sequences such that costs of most expensive sub-sequence is minimised,
- problem can be solved in $\mathcal{O}(n p)$
- can be approximated by greedy-algorithm in less time
- in data-based balancing: with correct ordering of blocks, we have data-locality

Examples for Data-Based-Balancing

LPT

Sequence-part. 1

Sequence-part. 2

Matrix-Vector-Multiplication

- want to compute $y=A x$, where A is a \mathcal{H}-matrix,
- for all leafs $T \in L\left(T_{I \times I}\right)$ let $M_{A}(t)$ denote the corresponding matrix-block in A,
- Algorithm for processor i :

```
each proc has copy of }x\mathrm{ and }
for all t\inL(T}\mp@subsup{T}{I\timesI}{\prime})\mathrm{ do
    if }d(t)=i\mathrm{ then multiply }\mp@subsup{M}{A}{}(t)\mathrm{ with }x\mathrm{ ;
scatter local copy to all processors;
add copies from other processors to local copy;
```

- not perfect scaling because whole vector must be transferred and added on each processor
- solution: with data-locality, only store part of vector on each processor

Matrix-Matrix-Multiplication

- Want to compute $C=A B$, where A, B and C are \mathcal{H}-matrices.

Shared-Memory

1. data-based balancing:

- distribute destination-matrix C
- use serial algorithm on each processor but only work on local part of block-clustertree

2. computation-based balancing:

- simulate multiplication (store list of block-multiplications)
- distribute list of block-multiplications with the restriction that each dest-block is only on one processor
- do block-multiplications assigned to each processor
- problems: definition of cost-function, how to handle blocked destination-blocks

Numerical Results

- partitioning from 2D-FEM on unit-square, constant rank 5, constant filling
- times in seconds

dof / p	1	2	3	4	5	6	7	8
4096	249.6	123.8	86.0	66.7	54.3	44.9	39.0	37.1
		123.3	83.5	63.6	50.5	43.0	36.1	28.7
		$(2.0 / 2.0)$	$(2.9 / 3.0)$	$(3.7 / 3.9)$	$(4.6 / 4.9)$	$(5.5 / 5.8)$	$(6.4 / 6.9)$	$(6.7 / 8.7)$
2175.5	1465.4	751.6	576.3	468.6	410.9	348.7	309.5	
		1106.4	725.2	573.0	444.2	375.1	314.2	265.1
		$(1.5 / 2.0)$	$(2.9 / 3.0)$	$(3.8 / 3.8)$	$(4.6 / 4.9)$	$(5.3 / 5.8)$	$(6.2 / 6.9)$	$(7.0 / 8.2)$

Distributed Memory

- Problem: how to handle communication and when to synchronise
- BSP-computation:
- one step of a BSP-computation:
* local computation
* communication
* synchronisation
- BSP-algorithm for matrix-multiplication:
- use computation-based balancing
- simulate multiplication
- partition local operations into steps (balanced among processors)
- step:
* transfer matrix-blocks needed for local operations
* do multiplications
* transfer results
- algorithm allows to control amount of communication by choosing number of steps

Matrix-Inversion

Assume following structure of \mathcal{H}-matrices:

$$
A=\left(\begin{array}{c|c}
A_{0} & A_{1} \\
\hline A_{2} & A_{3}
\end{array}\right) .
$$

Using the Schur-complement the inverse of A is:

$$
A^{-1}=\left(\begin{array}{c|c}
A_{0}^{-1}+A_{0}^{-1} A_{1} S^{-1} A_{2} A_{0}^{-1} & -A_{0}^{-1} A_{1} S^{-1} \\
\hline-S^{-1} A_{2} A_{0}^{-1} & S^{-1}
\end{array}\right)
$$

with

$$
S=A_{3}-A_{2} A_{0}^{-1} A_{1} .
$$

The algorithm for inversion is:

```
procedure invert ( \(A, C, T\) )
    if \(A\) is dense then \(C=A^{-1}\);
    else
        invert \(\left(A_{0}, C_{0}, T_{0}\right)\);
        \(T_{1}=C_{0} A_{1} ; T_{2}=A_{2} C_{0} ; \quad\{\) mult. in parallel \(\}\)
        \(A_{3}=A_{3}-A_{2} T_{1} ;\)
        invert \(\left(A_{3}, C_{3}, T_{3}\right) ; \quad\{\) build Schur-compl. \(\}\)
        \(C_{1}=-T_{1} C_{3} ; C_{2}=-C_{3} T_{2} ; \quad\{\) mult. in parallel \(\}\)
        \(C_{0}=C_{0}-T_{1} C_{2} ;\)
endif; end;
```

- only minimal internal parallelity
- therefore only multiplications can be parallelised
- needs fast online-scheduling
- problem: cost-function for matrix-multiplication is expansive

