Parallel Algorithms for $\mathcal H$ -matrices

1

- Definitions
- Load balancing
- Matrix-Vector-Multiplication
- Matrix-Multiplication
- Matrix-Inversion

Definitions

- Let I be an indexset,
- T_I is a clustertree over I,
- $T_{I \times I}$ is a block-clustertree defined by T_I and some adm. criterion.
- for all nodes $t \in T_{I \times I}$ let S(t) be the sons of t,
- $L(T_{I \times I})$ denotes the set of leafs of $T_{I \times I}$ with $N = |L(T_{I \times I})|$
- $\bullet \ p \geq 1$ is the number of processors with $p \ll N$

<u>Goal</u>

- parallelise building of \mathcal{H} -matrix and \mathcal{H} -matrix-arithmetics
- memory and computation should be balanced among processors
- algorithms should support wide range of machines (shared- and distributed-memory)

Load-Balancing

- data-based balancing:
 - let $c: T_{I imes I} o \mathbb{R}_+$ be a cost-function,
 - we are looking for a function

$$d: T_{I \times I} \to \{-1, 0, \dots, p-1\}$$

such that

$$\max_{i < p} \sum_{t \in L(T_{I \times I}): d(t) = i} c(t)$$

is minimised.

- restriction: $\forall t \in T_{I \times I}, t' \in S(t) : d(t) \neq -1 \implies d(t') = d(t)$
- computation-based balancing:
 - cost-function c defined over operations
 - same min-max-problem
 - problem: definition of cost-function

Scheduling-Algorithms

- LPT-list-scheduling :
 - works on set of items (matrix-blocks, operations),
 - order items according to costs
 - schedule items in ordered list to processor with minimal costs,

-
$$\left(\frac{4}{3}-\frac{1}{3p}\right)$$
-approximation scheme,

- complexity: $\mathcal{O}(n\log n + np)$, where n is the number of items
- Sequence-partitioning :
 - works on sequence (array) of items,
 - partition sequence into sub-sequences such that costs of most expensive sub-sequence is minimised,
 - problem can be solved in $\mathcal{O}(np)$
 - can be approximated by greedy-algorithm in less time
 - in data-based balancing: with correct ordering of blocks, we have data-locality

Matrix-Vector-Multiplication

- want to compute y = Ax, where A is a \mathcal{H} -matrix,
- for all leafs $T \in L(T_{I \times I})$ let $M_A(t)$ denote the corresponding matrix-block in A,
- Algorithm for processor *i*:

each proc has copy of x and y; for all $t \in L(T_{I \times I})$ do if d(t) = i then multiply $M_A(t)$ with x; scatter local copy to all processors; add copies from other processors to local copy;

- not perfect scaling because whole vector must be transferred and added on each processor
- solution: with data-locality, only store part of vector on each processor

Matrix-Matrix-Multiplication

• Want to compute C = AB, where A, B and C are \mathcal{H} -matrices.

Shared-Memory

- 1. data-based balancing:
 - distribute destination-matrix C
 - use serial algorithm on each processor but only work on local part of block-clustertree
- 2. computation-based balancing:
 - simulate multiplication (store list of block-multiplications)
 - distribute list of block-multiplications with the restriction that each dest-block is only on one processor
 - do block-multiplications assigned to each processor
 - problems: definition of cost-function, how to handle blocked destination-blocks

Numerical Results

- partitioning from 2D-FEM on unit-square, constant rank 5, constant filling
- times in seconds

dof / p	1	2	3	4	5	6	7	8
4096	249.6	123.8	86.0	66.7	54.3	44.9	39.0	37.1
		123.3	83.5	63.6	50.5	43.0	36.1	28.7
		(2.0/2.0)	(2.9/3.0)	(3.7/3.9)	(4.6/4.9)	(5.5/5.8)	(6.4/6.9)	(6.7/8.7)
16384	2175.5	1465.4	751.6	576.3	468.6	410.9	348.7	309.5
		1106.4	725.2	573.0	444.2	375.1	314.2	265.1
		(1.5/2.0)	(2.9/3.0)	(3.8/3.8)	(4.6/4.9)	(5.3/5.8)	(6.2/6.9)	(7.0/8.2)

Distributed Memory

- Problem: how to handle communication and when to synchronise
- BSP-computation:
 - one step of a BSP-computation:
 - * local computation
 - * communication
 - * synchronisation
- BSP-algorithm for matrix-multiplication:
 - use computation-based balancing
 - simulate multiplication
 - partition local operations into steps (balanced among processors)
 - step:
 - * transfer matrix-blocks needed for local operations
 - * do multiplications
 - * transfer results
- algorithm allows to control amount of communication by choosing number of steps

Matrix-Inversion

Assume following structure of $\mathcal H\text{-matrices:}$

$$A = \left(\begin{array}{c|c} A_0 & A_1 \\ \hline A_2 & A_3 \end{array} \right) \,.$$

Using the Schur-complement the inverse of A is:

$$A^{-1} = \left(\begin{array}{c|c} A_0^{-1} + A_0^{-1} A_1 S^{-1} A_2 A_0^{-1} & -A_0^{-1} A_1 S^{-1} \\ \hline -S^{-1} A_2 A_0^{-1} & S^{-1} \end{array} \right)$$

with

$$S = A_3 - A_2 A_0^{-1} A_1.$$

The algorithm for inversion is:

procedure invert(A, C, T) if A is dense then $C = A^{-1}$; else invert(A_0, C_0, T_0); $T_1 = C_0 A_1; T_2 = A_2 C_0;$ { mult. in parallel } $A_3 = A_3 - A_2 T_1;$ invert(A_3, C_3, T_3); { build Schur-compl. } $C_1 = -T_1 C_3; C_2 = -C_3 T_2;$ { mult. in parallel } $C_0 = C_0 - T_1 C_2;$ endif; end;

- only minimal internal parallelity
- therefore only multiplications can be parallelised
- needs fast online-scheduling
- problem: cost-function for matrix-multiplication is expansive