
Parallel H-matrix Arithmetic for Shared Memory Systems

1

Parallel H-matrix Arithmetic for Shared Memory Systems

I) Matrix Building

2

Parallel H-matrix Arithmetic for Shared Memory Systems

I) Matrix Building

II) Matrix-Vector Multiplication

2

Parallel H-matrix Arithmetic for Shared Memory Systems

I) Matrix Building

II) Matrix-Vector Multiplication

III) Matrix Multiplication

2

Parallel H-matrix Arithmetic for Shared Memory Systems

I) Matrix Building

II) Matrix-Vector Multiplication

III) Matrix Multiplication

IV) Matrix Inversion

2

Model Problem

• Problem for all numerical examples:

– single layer potential, piecewise constant ansatz

– Galerkin discretisation

3

Model Problem

• Problem for all numerical examples:

– single layer potential, piecewise constant ansatz

– Galerkin discretisation

• representation by H-matrices; rank-k blocks computed with ACA

3

Model Problem

• Problem for all numerical examples:

– single layer potential, piecewise constant ansatz

– Galerkin discretisation

• representation by H-matrices; rank-k blocks computed with ACA

• geometry:

3

Model Problem

• Problem for all numerical examples:

– single layer potential, piecewise constant ansatz

– Galerkin discretisation

• representation by H-matrices; rank-k blocks computed with ACA

• geometry:

• computed on shared memory system with p processors (HP9000 Superdome,

PA-RISC 875 MHz)

3

Notation

• Index set I = {0, · · · , n − 1}

• Cluster tree T (I) constructed by binary space partitioning,

• depth(T (I)) = log2 n

• Block cluster tree T (I × I) with standard admissibility (η = 1.0)

• Leafs of block cluster tree: L(T (I × I))

4

Matrix Building

5

Matrix Building

Sequential algorithm:

for all (τ, σ) ∈ L(T (I × I)) do

if (τ, σ) is admissible then

create rank-k matrix;

else

create dense matrix;

endfor;

6

Matrix Building

Sequential algorithm:

for all (τ, σ) ∈ L(T (I × I)) do

if (τ, σ) is admissible then

create rank-k matrix;

else

create dense matrix;

endfor;

Straightforward parallelisation:

create each block on different processor

6

Load Balancing

7

Load Balancing

• use online scheduling algorithm (load balancing during computation)

7

Load Balancing

• use online scheduling algorithm (load balancing during computation)

• Advantage: no cost function needed

7

Load Balancing

• use online scheduling algorithm (load balancing during computation)

• Advantage: no cost function needed

• List Scheduling: first idle processor executes first not yet computed block

for all (τ, σ) ∈ L(T (I × I)) do

p := first idle processor;

if (τ, σ) is admissible then

create rank-k matrix on p;

else

create dense matrix on p;

endfor;

7

Load Balancing

• use online scheduling algorithm (load balancing during computation)

• Advantage: no cost function needed

• List Scheduling: first idle processor executes first not yet computed block

for all (τ, σ) ∈ L(T (I × I)) do

p := first idle processor;

if (τ, σ) is admissible then

create rank-k matrix on p;

else

create dense matrix on p;

endfor;

Parallel Speedup (Graham ’69) and Complexity:

t(1)

t(p)
≥ p

(

2 − 1

p

) , WMB(n, p) = O
(

n log n

p

)

.

7

Programming Shared Memory Systems

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

• POSIX threads (Pthreads) as common interface on many computer systems

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

• POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool :

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

• POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool :

• consists of p threads which execute given jobs

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

• POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool :

• consists of p threads which execute given jobs

• much simpler interface than Pthreads: simplifies programming

8

Programming Shared Memory Systems

Threads:

• parallel execution paths in a single process

• all threads share same address space: no communication

• POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool :

• consists of p threads which execute given jobs

• much simpler interface than Pthreads: simplifies programming

• more efficient: less startup time per job because no real thread is started

8

Matrix Building with Thread Pool

procedure build_matrix ((τ, σ))

if (τ, σ) is admissible then

build a rank-k matrix using ACA;

else

build a dense matrix;

end;

for all (τ, σ) ∈ L(T (I × I)) do

run (build_matrix((τ, σ)));

endfor;

sync_all ();

9

Numerical Results

Fixed rank: k = 15.

Time and Parallel Efficiency

E(p) =
t(1)

p · t(p)

n t(1) E(4) E(8) E(12) E(16)

3 968 134.9 s 100 % 99.9 % 99.7 % 99.6 %

7 920 341.4 s 99.9 % 99.6 % 99.2 % 99.6 %

19 320 1040.8 s 99.9 % 99.8 % 99.7 % 99.6 %

43 680 2798.1 s 99.9 % 99.9 % 99.7 % 99.7 %

89 400 6587.7 s 100 % 100 % 100 % 100 %

184 040 15313.9 s 99.6 % 99.2 % 99.1 % 98.4 %

10

Matrix-Vector Multiplication

To compute:

y := αAx + βy

Let yi, xi denote local part of y and x on proc. i, |yi| = |xi| = n/p.

11

Matrix-Vector Multiplication

To compute:

y := αAx + βy

Let yi, xi denote local part of y and x on proc. i, |yi| = |xi| = n/p.

Problem: two processors write to same part of y

y A

p=1

p=3

p=0

12

Matrix-Vector Multiplication

To compute:

y := αAx + βy

Let yi, xi denote local part of y and x on proc. i, |yi| = |xi| = n/p.

Problem: two processors write to same part of y

y A

p=1

p=3

p=0

Solution: load balancing with space-filling curves

13

Matrix-Vector Multiplication

To compute:

y := αAx + βy

Let yi, xi denote local part of y and x on proc. i, |yi| = |xi| = n/p.

Problem: two processors write to same part of y

y A

p=1

p=3

p=0

Solution: load balancing with space-filling curves

13

Matrix-Vector Multiplication

To compute:

y := αAx + βy

Let yi, xi denote local part of y and x on proc. i, |yi| = |xi| = n/p.

Problem: two processors write to same part of y

y A

p=1

p=3

p=0

Solution: load balancing with space-filling curves

13

Load Balancing

• cost function: number of entries per block

14

Load Balancing

• cost function: number of entries per block

• use order defined by space-filling curve to form list of matrix blocks

14

Load Balancing

• cost function: number of entries per block

• use order defined by space-filling curve to form list of matrix blocks

• use sequence partitioning to schedule list (Olstad/Manne’95: solution in O (np))

14

Load Balancing

• cost function: number of entries per block

• use order defined by space-filling curve to form list of matrix blocks

• use sequence partitioning to schedule list (Olstad/Manne’95: solution in O (np))

Sharing Degree

no. of processors

10 20 30 40 50 60 70 80 90 100 110 120

m
ax

. n
o.

 o
f p

ro
c.

 p
er

 in
de

x

10

20

30

40

50

60

70

80
LPT
Hilbert Curve

no. of processors

10 20 30 40 50 60 70 80 90 100 110 120

m
ax

. n
o.

 o
f p

ro
c.

 p
er

 in
de

x

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
Hilbert Curve
1.3 * Sqrt(p)

15

Matrix-Vector Multiplication Algorithm

procedure step_1 (i, β, y, A, x)

yi := β · yi;

y′

i := αAix;

end;

procedure step_2 (i, y, y′

i)

yi :=
P

y′

i;

end;

procedure mv_mul(i, α, A, x, β, y)

for 0 ≤ i < p do

run(step_1(i, β, y, A, x));

sync_all();

for 0 ≤ i < p do

run(step_2(i, y, y′

i));

sync_all();

end;

16

Complexity of parallel Matrix-Vector Multiplication

WMV(n, p) = O
(

n log n

p
+

n√
p

)

17

Complexity of parallel Matrix-Vector Multiplication

WMV(n, p) = O
(

n log n

p
+

n√
p

)

Numerical Results

n t(1) E(4) E(8) E(12) E(16)

3 968 1.4710−1 s 85.3 % 77.6 % 66.3 % 49.7 %

7 920 3.9910−1 s 83.4 % 79.5 % 74.3 % 64.9 %

19 320 1.2710−0 s 86.4 % 83.8 % 79.6 % 72.3 %

43 680 3.4010−0 s 87.2 % 87.0 % 82.8 % 78.7 %

89 400 7.8410−0 s 90.1 % 85.1 % 83.9 % 80.4 %

184 040 1.7910+1 s 90.0 % 85.1 % 86.5 % 80.7 %

18

Matrix Multiplication

To compute:

C := αAB + βC

19

Matrix Multiplication

To compute:

C := αAB + βC

Sequential Algorithm for a m × m blockmatrix:

procedure mul(α, A, B, β, C)

if A, B and C are blockmatrices then

for i := 0, . . . , m − 1 do

for j := 0, . . . , m − 1 do

for l := 0, . . . , m − 1 do

mul(α, Ail, Blj , β, Cij);

else

8: C := αAB + βC ;

end;

20

Matrix Multiplication

To compute:

C := αAB + βC

Sequential Algorithm for a m × m blockmatrix:

procedure mul(α, A, B, β, C)

if A, B and C are blockmatrices then

for i := 0, . . . , m − 1 do

for j := 0, . . . , m − 1 do

for l := 0, . . . , m − 1 do

mul(α, Ail, Blj , β, Cij);

else

8: C := αAB + βC ;

end;

Parallelisation: execute line 8 on different processors (online scheduling)

21

Collisions

Consider




C00 C01

C10 C11



 =





A00 A01

A10 A11









B00 B01

B10 B11





Parallel execution of

C00 = C00 + A00B00 and C00 = C00 + A01B10.

leads to collision and blocking of one processor.

22

Collisions

Consider




C00 C01

C10 C11



 =





A00 A01

A10 A11









B00 B01

B10 B11





Parallel execution of

C00 = C00 + A00B00 and C00 = C00 + A01B10.

leads to collision and blocking of one processor.

Solution:

• simulate matrix multiplication to collect all products AB for a destination block C

23

Collisions

Consider




C00 C01

C10 C11



 =





A00 A01

A10 A11









B00 B01

B10 B11





Parallel execution of

C00 = C00 + A00B00 and C00 = C00 + A01B10.

leads to collision and blocking of one processor.

Solution:

• simulate matrix multiplication to collect all products AB for a destination block C

• execute list of products for each C on a different processor

23

Algorithm

procedure sim_mul(A, B, C)

if A, B and C are blockmatrices then

for i := 0, . . . , m − 1 do

for j := 0, . . . , m − 1 do

for l := 0, . . . , m − 1 do

sim_mul(Ail, Blj , Cij);

else

PC := PC ∪ {(A, B)}; LMM := LMM ∪ {C};

end;

24

Algorithm

procedure sim_mul(A, B, C)

if A, B and C are blockmatrices then

for i := 0, . . . , m − 1 do

for j := 0, . . . , m − 1 do

for l := 0, . . . , m − 1 do

sim_mul(Ail, Blj , Cij);

else

PC := PC ∪ {(A, B)}; LMM := LMM ∪ {C};

end;

procedure mul_block(C)

for all (A, B) ∈ PC do C := C + αAB;

procedure par_mul(α, β,LMM)

for all C ∈ LMM do

run(mul_block(C));

24

Complexity of parallel H-Matrix Multiplication

Using List scheduling:

WMM(n, p) = O
(

n log2 n

p

)

25

Complexity of parallel H-Matrix Multiplication

Using List scheduling:

WMM(n, p) = O
(

n log2 n

p

)

Numerical Results

n t(1) E(4) E(8) E(12) E(16)

3 968 98.5 s 98.3 % 97.0 % 95.3 % 95.0 %

7 920 287.8 s 98.2 % 97.5 % 97.0 % 95.6 %

19 320 945.5 s 99.0 % 97.7 % 96.9 % 96.2 %

43 680 2817.2 s 99.1 % 98.2 % 97.1 % 96.1 %

89 400 7432.7 s 100 % 99.5 % 99.0 % 97.6 %

184 040 19292.2 s 99.8 % 98.8 % 98.0 % 96.4 %

26

Matrix Inversion

Sequential Schur-complement algorithm for a 2 × 2 blockmatrix:

procedure invert(A, C, T)

if A is a blockmatrix then

invert(A00, C00, T00);

T01 := C00A01; T10 := A10C00;

A11 := A11 − A10T01;

invert(A11, C11, T11);

C01 := −T01C11; C10 := −C11T10;

C00 := C00 − T01C10;

else

C := A−1;

endif;

end;

27

Matrix Inversion

Sequential Schur-complement algorithm for a 2 × 2 blockmatrix:

procedure invert(A, C, T)

if A is a blockmatrix then

invert(A00, C00, T00);

T01 := C00A01; T10 := A10C00;

A11 := A11 − A10T01;

invert(A11, C11, T11);

C01 := −T01C11; C10 := −C11T10;

C00 := C00 − T01C10;

else

C := A−1;

endif;

end;

Parallelisation: use parallel matrix multiplication for all 6 products

28

Complexity of Parallel H-Matrix Inversion

WMI(n, p) = O
(

n +
n log2 n

p

)

29

Complexity of Parallel H-Matrix Inversion

WMI(n, p) = O
(

n +
n log2 n

p

)

Numerical Results

n t(1) E(4) E(8) E(12) E(16)

3 968 97.6 s 92.9 % 82.1 % 71.5 % 60.6 %

7 920 286.3 s 93.7 % 83.5 % 73.2 % 62.2 %

19 320 939.2 s 94.5 % 83.7 % 73.3 % 63.8 %

43 680 2796.7 s 94.2 % 83.3 % 72.7 % 62.9 %

89 400 10106.2 s 94.9 % 83.8 % 73.2 % 63.8 %

184 040 19191.0 s 94.8 % 83.8 % 73.1 % 63.7 %

30

Conclusion

Speedup of parallel H-matrix arithmetic

no. of processors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
pe

ed
up

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
Mat−Build
Mat−Vec
Mat−Mul
Mat−Inv

31

