‘ Parallel H-matrix Arithmetic for Shared Memory Systems I

‘ Parallel H-matrix Arithmetic for Shared Memory Systems I

1) Matrix Building

‘ Parallel H-matrix Arithmetic for Shared Memory Systems I

1) Matrix Building

II) Matrix-Vector Multiplication

‘ Parallel H-matrix Arithmetic for Shared Memory Systems I

1) Matrix Building
II) Matrix-Vector Multiplication

[II) Matrix Multiplication

‘ Parallel H-matrix Arithmetic for Shared Memory Systems I

1) Matrix Building
II) Matrix-Vector Multiplication
[II) Matrix Multiplication

I\V) Matrix Inversion

Model Problem

e Problem for all numerical examples:

— single layer potential, piecewise constant ansatz

— Galerkin discretisation

Model Problem

e Problem for all numerical examples:
— single layer potential, piecewise constant ansatz

— Galerkin discretisation

e representation by H-matrices; rank-k blocks computed with ACA

Model Problem

e Problem for all numerical examples:
— single layer potential, piecewise constant ansatz

— Galerkin discretisation

e representation by H-matrices; rank-k blocks computed with ACA

e geometry:

Model Problem

e Problem for all numerical examples:
— single layer potential, piecewise constant ansatz

— Galerkin discretisation

e representation by H-matrices; rank-k blocks computed with ACA

e geometry:

e computed on shared memory system with p processors (HP9000 Superdome,
PA-RISC 875 MHz)

Notation

Indexset I = {0,--- ,n— 1}

Cluster tree T'(') constructed by binary space partitioning,

depth(T'(I)) = logy n

Block cluster tree T'(1 x ') with standard admissibility (7 = 1.0)

Leafs of block cluster tree: L(7T'(1 x 1))

Matrix Building '

Matrix Building '

Sequential algorithm:

forall (7,0) € L(T(I x 1)) do
if (7,0) is admissible then

create rank-k matrix;
else
create dense matrix;
endfor;

Matrix Building '

Sequential algorithm:

forall (7,0) € L(T(I x 1)) do
if (7,0) is admissible then

create rank-k matrix;
else
create dense matrix;
endfor;

Straightforward parallelisation:

create each block on different processor

Load Balancing

Load Balancing

e use online scheduling algorithm (load balancing during computation)

Load Balancing

e use online scheduling algorithm (load balancing during computation)

e Advantage: no cost function needed

Load Balancing

e use online scheduling algorithm (load balancing during computation)
e Advantage: no cost function needed

e List Scheduling: first idle processor executes first not yet computed block

forall (7,0) € L(T(I x 1)) do
p :=firstidle processor;

if (7,0) is admissible then

create rank-£ matrix on p;
else
create dense matrix on p;
endfor;

Load Balancing

e use online scheduling algorithm (load balancing during computation)
e Advantage: no cost function needed

e List Scheduling: first idle processor executes first not yet computed block

forall (7,0) € L(T(I x 1)) do
p :=firstidle processor;

if (7,0) is admissible then

create rank-£ matrix on p;
else
create dense matrix on p;
endfor;

Parallel Speedup (Graham '69) and Complexity:

@2 f , WMB(nvp):O< D)

Programming Shared Memory Systems

Programming Shared Memory Systems

Threads:

e parallel execution paths in a single process

Programming Shared Memory Systems

Threads:

e parallel execution paths in a single process

e all threads share same address space: no communication

Programming Shared Memory Systems

Threads:

e parallel execution paths in a single process

e all threads share same address space: no communication

e POSIX threads (Pthreads) as common interface on many computer systems

Programming Shared Memory Systems

Threads:
e parallel execution paths in a single process
e all threads share same address space: no communication

e POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool:

Programming Shared Memory Systems

Threads:
e parallel execution paths in a single process
e all threads share same address space: no communication
e POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool:

e consists of p threads which execute given jobs

Programming Shared Memory Systems

Threads:
e parallel execution paths in a single process
e all threads share same address space: no communication
e POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool:

e consists of p threads which execute given jobs

e much simpler interface than Pthreads: simplifies programming

Programming Shared Memory Systems

Threads:
e parallel execution paths in a single process
e all threads share same address space: no communication
e POSIX threads (Pthreads) as common interface on many computer systems

Implementation with Thread Pool:

e consists of p threads which execute given jobs

e much simpler interface than Pthreads: simplifies programming

e more efficient: less startup time per job because no real thread is started

Matrix Building with Thread Pool

procedure build_matrix ((7,0))
if (7,0) is admissible then
build a rank-£ matrix using ACA;
else
build a dense matrix;
end;

forall (7,0) € L(T(I x 1)) do

run (build_matrix((7,)));
endfor;

sync_all ();

Fixed rank: & = 15.

Numerical Results

Time and Parallel Efficiency

n

3968
7920
19320
43 680
89400
184040

134.9 s
3414 s
1040.8 s
2798.1s
6587.7 s
153139 s

Matrix-Vector Multiplication '

y = aAx + By

To compute:

Let /;, 2; denote local part of ¢/ and on proc. 4, |y;| = |x;| = n/p.

Matrix-Vector Multiplication '

y = aAx + By

To compute:

Let /;, 2; denote local part of ¢/ and on proc. 4, |y;| = |x;| = n/p.

Problem: two processors write to same part of

y p=0 A

-

Matrix-Vector Multiplication '

y = aAx + By

To compute:

Let 1/;, 2; denote local part of ¢/ and on proc. 4, |y;| = |x;| = n/p.

Problem: two processors write to same part of ¥

p=0

1 B
I p=3

Solution: load balancing with space-filling curves

YT D I
D

Matrix-Vector Multiplication '

y = aAx + By

To compute:

Let 1/;, 2; denote local part of ¢/ and on proc. 4, |y;| = |x;| = n/p.

Problem: two processors write to same part of ¥

p=0

1 B
I p=3

Solution: load balancing with space-filling curves

~
U

N IDlan
allazilaniies
T oa

Matrix-Vector Multiplication '

y = aAx + By

To compute:

Let 1/;, 2; denote local part of ¢/ and on proc. 4, |y;| = |x;| = n/p.

Problem: two processors write to same part of

y p=0 A

N . =1
I p=3

Solution: load balancing with space-filling curves

AT LN
U T

Load Balancing

e cost function: number of entries per block

Load Balancing

e cost function: number of entries per block

e use order defined by space-filling curve to form list of matrix blocks

Load Balancing

e cost function: number of entries per block

e use order defined by space-filling curve to form list of matrix blocks

e use sequence partitioning to schedule list (Olstad/Manne’95: solution in O (np))

Load Balancing

e cost function: number of entries per block

e use order defined by space-filling curve to form list of matrix blocks

e use sequence partitioning to schedule list (Olstad/Manne’95: solution in O (np))

Sharing Degree

LPT] Hilbert Curve
Hilbert Curve) 1.3 * Sqrt(p)

max. no. of proc. per index
max. no. of proc.

PN WA OO N ©
I T T S R N N N B

T T
10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120

no. of processors no. of processors

Matrix-Vector Multiplication Algorithm

procedure step_1 (7, 3,y, A, x)
Yi := 0 yi;
y: = aA;x;

end;

procedure step_2 (%, v, U,)

Yi ==y Yi;

end;

procedure mv_mul(2, o, A, x, 3, 1)
for 0 <17 < pdo
run(step_1(7, 3, vy, A, x));
sync_all();
for 0 <17 < pdo
run(step_2(%, Y, y.));
sync_all();
end;

Complexity of parallel Matrix-Vector Multiplication

Wav (n,p) = O <

nlogn n)
|
p VP

Complexity of parallel Matrix-Vector Multiplication

nlogn n)
|
p VP

Wav (n,p) = O <

Numerical Results

n t(1) E(4) | E@8)

3968 | 1.4710—1s | 853% | 77.6 %

7920 | 3.9910—1s | 834% | 79.5%
19320 | 1.2710—0s | 86.4% | 83.8%
43680 | 3.4010—0s | 87.2% | 87.0%
89400 | 7.8410—0s | 90.1% | 85.1 %

184040 | 1.7910+1s | 90.0% | 85.1 %

‘ Matrix Multiplication '

To compute:

C :=aAB + 3C

‘ Matrix Multiplication '

To compute:

C .= aAB + pC

Sequential Algorithm for a 1m X m blockmatrix:

procedure mul(o, A, B, 3, C")
if A, B and C are blockmatrices then
for 2:=0,...,m — 1 do
for y:=0,...,m — 1 do
for [:=0,...,m —1 do
mul(o, Ail, Blj, 5, Cij);
else

C = aAB + pC;

‘ Matrix Multiplication '

To compute:

C :=aAB + 3C

Sequential Algorithm for a 1m X m blockmatrix:

procedure mul(o, A, B, 3, C")

if A, B and C are blockmatrices then

for 2:=0,...,m — 1 do

for y:=0,...,m — 1 do
for [:=0,...,m —1 do
mul(o, Ail, Blj, 5, Cij);

else

C := aAB + pC;

end;

Parallelisation: execute line 8 on different processors (online scheduling)

Collisions

Consider

Coo Co1 Ao An Boo Bo1
Cio Chi1 Ajp An Bio B

Parallel execution of
Coo = Coo + AgoBoo and Cyp = Cog + Ao1 Bio-

leads to collision and blocking of one processor.

Collisions

Consider

Coo Co1 Ao An Boo Bo1
Cio Ci1 Ao An Biy B

Parallel execution of
Coo = Coo + AgoBoo and Cyp = Cog + Ao1 Bio-

leads to collision and blocking of one processor.

Solution:

e simulate matrix multiplication to collect all products A B for a destination block '

Collisions

Consider

Coo Co1 Ao An Boo Bo1
Cio Ci1 Ao An Biy B

Parallel execution of
Coo = Coo + AgoBoo and Cyp = Cog + Ao1 Bio-

leads to collision and blocking of one processor.

Solution:

e simulate matrix multiplication to collect all products A B for a destination block '

e execute list of products for each C' on a different processor

Algorithm

procedure sim_mul(A, B, C")
if A, B and C are blockmatrices then
for 2 :=0,....,m — 1 do
for 9 :=0,...,m — 1 do
for [:=0,...,m — 1 do
sim_mul(Az, By, Cij);

else
Po := Po U {(A, B)}, Ly = Ly U {C},

Algorithm

procedure sim_mul(A, B, C")
if A, B and C are blockmatrices then
for 2 :=0,....,m — 1 do
for 9 :=0,...,m — 1 do
for [:=0,...,m — 1 do
sim_mul(Ail, Blj, Cij);

else
Po := Po U {(A, B)}, Ly = Ly U {C},

end;

procedure mul_block(C")
forall (A, B) € PcdoC :=C + aAB;

procedure par_mul(v, 5, Lyum)
forall C' € Lyu do
run(mul_block(C"));

Complexity of parallel H-Matrix Multiplication

Using List scheduling:
n log? n)
p

Wham (n, p) = O <

Complexity of parallel H-Matrix Multiplication

Using List scheduling:
n log? n)
p

Wam (n,p) = O <

Numerical Results

n

t(1)

E(4)

E(8)

3968
7920
19320
43 680
89400
184040

98.5s
287.8s
9455 s
2817.2 s
1432.7 s
19292.2 s

98.3 %
98.2 %
99.0 %
99.1 %
100 %
99.8 %

97.0 %
97.5 %
97.7 %
98.2 %
99.5 %
98.8 %

Matrix Inversion '

Sequential Schur-complement algorithm for a 2 x 2 blockmatrix:

procedure invert(A, C',T")
if A is a blockmatrix then
invert(A()(), Coo, Too);
To1 := CooAo1; Tio := A10Coo;
A1 = A1 — AvoTon;
invert(A11,C11,711);
Co1 := —101C11; Cio := —Chr1110;
Coo := Coo — T01C1o;
else
C.= A1
endif;
end;

Matrix Inversion '

Sequential Schur-complement algorithm for a 2 x 2 blockmatrix:

procedure invert(A, C',T")
if A is a blockmatrix then
invert(Aoo, Coo, 100);
To1 := CooAo1; Tio := A10Coo;
A1 = A1 — AvoTon;
invert(A11, C11,711);
Co1 := —101C11; Cio := —Chr1110;
Coo := Coo — T01C1o;
else
C.= A1
endif;
end;

Parallelisation: use parallel matrix multiplication for all 6 products

Complexity of Parallel H-Matrix Inversion

n log? n)
p

Wa(n, p) = O (n '

Complexity of Parallel H-Matrix Inversion

n log? n)

p

Wa(n, p) = O (n '

Numerical Results

n

t(1)

E(4)

E(8)

3968
7920
19320
43 680
89400
184040

97.6s
286.3 s
939.2 s
2796.7 s
10106.2 s
19191.0s

92.9 %
93.7 %
94.5 %
94.2 %
94.9 %
94.8 %

82.1 %
83.5 %
83.7 %
83.3 %
83.8 %
83.8 %

| Conclusion '

Speedup of parallel H-matrix arithmetic

O Mat-Build

¢ Mat-Vec
Mat-Mul
Mat-Inv

T T T T T T T
9 10 11 12 13 14 15 16

no. of processors

