I) Matrix Building

I) Matrix Building

II) Matrix-Vector Multiplication

- I) Matrix Building
- II) Matrix-Vector Multiplication
- III) Matrix Multiplication

- I) Matrix Building
- II) Matrix-Vector Multiplication
- III) Matrix Multiplication
- IV) Matrix Inversion

- Problem for all numerical examples:
 - single layer potential, piecewise constant ansatz
 - Galerkin discretisation

- Problem for all numerical examples:
 - single layer potential, piecewise constant ansatz
 - Galerkin discretisation
- representation by \mathcal{H} -matrices; rank-k blocks computed with ACA

- Problem for all numerical examples:
 - single layer potential, piecewise constant ansatz
 - Galerkin discretisation
- representation by \mathcal{H} -matrices; rank-k blocks computed with ACA
- geometry:

- Problem for all numerical examples:
 - single layer potential, piecewise constant ansatz
 - Galerkin discretisation
- representation by \mathcal{H} -matrices; rank-k blocks computed with ACA
- geometry:

• computed on shared memory system with p processors (HP9000 Superdome, PA-RISC 875 MHz)

Notation

- Index set $I=\{0,\cdots,n-1\}$
- Cluster tree T(I) constructed by *binary space partitioning*,
- depth $(T(I)) = \log_2 n$
- Block cluster tree $T(I\times I)$ with standard admissibility ($\eta=1.0$)
- Leafs of block cluster tree: $\mathcal{L}(T(I \times I))$

• use online scheduling algorithm (load balancing during computation)

- use *online scheduling* algorithm (load balancing during computation)
- Advantage: no cost function needed

- use *online scheduling* algorithm (load balancing during computation)
- Advantage: no cost function needed
- List Scheduling: first idle processor executes first not yet computed block

for all $(\tau, \sigma) \in \mathcal{L}(T(I \times I))$ do p := fi rst idle processor; if (τ, σ) is admissible then create rank-k matrix on p; else create dense matrix on p; endfor;

- use *online scheduling* algorithm (load balancing during computation)
- Advantage: no cost function needed
- List Scheduling: first idle processor executes first not yet computed block

for all $(\tau, \sigma) \in \mathcal{L}(T(I \times I))$ do p := fi rst idle processor; if (τ, σ) is admissible then create rank-k matrix on p; else create dense matrix on p; endfor;

Parallel Speedup (Graham '69) and Complexity:

$$\frac{t(1)}{t(p)} \ge \frac{p}{\left(2 - \frac{1}{p}\right)} \quad , \quad \mathcal{W}_{\rm MB}(n, p) = \mathcal{O}\left(\frac{n\log n}{p}\right)$$

Threads:

• parallel execution paths in a single process

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication
- **POSIX** threads (*Pthreads*) as common interface on many computer systems

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication
- **POSIX** threads (*Pthreads*) as common interface on many computer systems

Implementation with *Thread Pool*:

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication
- **POSIX** threads (*Pthreads*) as common interface on many computer systems

Implementation with *Thread Pool*:

 $\bullet\,$ consists of p threads which execute given jobs

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication
- **POSIX** threads (*Pthreads*) as common interface on many computer systems

Implementation with *Thread Pool*:

- $\bullet\,$ consists of p threads which execute given jobs
- much simpler interface than Pthreads: simplifies programming

Threads:

- parallel execution paths in a single process
- all threads share same address space: no communication
- *POSIX* threads (*Pthreads*) as common interface on many computer systems

Implementation with *Thread Pool*:

- consists of p threads which execute given jobs
- much simpler interface than Pthreads: simplifies programming
- more efficient: less startup time per job because no real thread is started

Matrix Building with Thread Pool

```
procedure build_matrix ( (\tau, \sigma) )

if (\tau, \sigma) is admissible then

build a rank-k matrix using ACA;

else

build a dense matrix;

end;
```

for all $(\tau, \sigma) \in \mathcal{L}(T(I \times I))$ do *run* (build_matrix((τ, σ))); endfor;

sync_all ();

Numerical Results

Fixed rank: k = 15.

Time and Parallel Efficiency

$$E(p) = \frac{t(1)}{p \cdot t(p)}$$

n	t(1)	E(4)	E(8)	E(12)	E(16)
3 968	134.9 s	100 %	99.9 %	99.7 %	99.6 %
7 920	341.4 s	99.9 %	99.6 %	99.2 %	99.6 %
19320	1040.8 s	99.9 %	99.8 %	99.7 %	99.6 %
43 680	2798.1 s	99.9 %	99.9 %	99.7 %	99.7 %
89 400	6587.7 s	100 %	100 %	100 %	100 %
184 040	15313.9 s	99.6 %	99.2 %	99.1 %	98.4 %

To compute:

$$y := \alpha A x + \beta y$$

Let y_i, x_i denote local part of y and x on proc. i, $|y_i| = |x_i| = n/p$.

To compute:

$$y := \alpha A x + \beta y$$

Let y_i, x_i denote local part of y and x on proc. i, $|y_i| = |x_i| = n/p$.

Problem: two processors write to same part of \boldsymbol{y}

To compute:

$$y := \alpha A x + \beta y$$

Let y_i, x_i denote local part of y and x on proc. i, $|y_i| = |x_i| = n/p$.

Problem: two processors write to same part of \boldsymbol{y}

Solution: load balancing with space-filling curves

To compute:

$$y := \alpha A x + \beta y$$

Let y_i, x_i denote local part of y and x on proc. i, $|y_i| = |x_i| = n/p$.

Problem: two processors write to same part of \boldsymbol{y}

Solution: load balancing with space-filling curves

To compute:

$$y := \alpha A x + \beta y$$

Let y_i, x_i denote local part of y and x on proc. i, $|y_i| = |x_i| = n/p$.

Problem: two processors write to same part of \boldsymbol{y}

Solution: load balancing with *space-filling curves*

• cost function: number of entries per block

- cost function: number of entries per block
- use order defined by space-filling curve to form list of matrix blocks

- cost function: number of entries per block
- use order defined by space-filling curve to form list of matrix blocks
- use sequence partitioning to schedule list (Olstad/Manne'95: solution in $\mathcal{O}(np)$)

- cost function: number of entries per block
- use order defined by space-filling curve to form list of matrix blocks
- use sequence partitioning to schedule list (Olstad/Manne'95: solution in $\mathcal{O}(np)$)

Sharing Degree

Matrix-Vector Multiplication Algorithm

```
procedure step_1 ( i, \beta, y, A, x )

y_i := \beta \cdot y_i;

y'_i := \alpha A_i x;
```

end;

```
procedure step_2 ( i, y, y'_i )
y_i := \sum y'_i;
```

end;

```
procedure mv_mul( i, \alpha, A, x, \beta, y )
for 0 \le i < p do
run( step_1( i, \beta, y, A, x ) );
sync_all();
for 0 \le i < p do
run( step_2( i, y, y'_i ) );
sync_all();
end;
```

Complexity of parallel Matrix-Vector Multiplication

$$\mathcal{W}_{\rm MV}(n,p) = \mathcal{O}\left(\frac{n\log n}{p} + \frac{n}{\sqrt{p}}\right)$$

Complexity of parallel Matrix-Vector Multiplication

$$\mathcal{W}_{\mathrm{MV}}(n,p) = \mathcal{O}\left(\frac{n\log n}{p} + \frac{n}{\sqrt{p}}\right)$$

Numerical Results

n	t(1)	E(4)	E(8)	E(12)	E(16)
3 968	$1.47_{10}{-1}\mathrm{s}$	85.3 %	77.6 %	66.3 %	49.7 %
7 920	$3.99_{10}{-1}\mathrm{s}$	83.4 %	79.5 %	74.3 %	64.9 %
19 320	$1.27_{10}{-}0\mathrm{s}$	86.4 %	83.8 %	79.6 %	72.3 %
43 680	$3.40_{10} {-} 0 \mathrm{s}$	87.2 %	87.0 %	82.8 %	78.7 %
89 400	$7.84_{10}{-}0{ m s}$	90.1 %	85.1 %	83.9 %	80.4 %
184 040	$1.79_{10}{+1}\mathrm{s}$	90.0 %	85.1 %	86.5 %	80.7 %

Matrix Multiplication

To compute:

 $C := \alpha AB + \beta C$

Sequential Algorithm for a $m \times m$ blockmatrix:

procedure mul(α , A, B, β , C) if A, B and C are blockmatrices then for $i := 0, \dots, m-1$ do for $j := 0, \dots, m-1$ do for $l := 0, \dots, m-1$ do mul(α , A_{il} , B_{lj} , β , C_{ij});

else

8: $C := \alpha AB + \beta C;$

end;

Matrix Multiplication

To compute:

 $C := \alpha AB + \beta C$

Sequential Algorithm for a $m \times m$ blockmatrix:

procedure mul(α , A, B, β , C) if A, B and C are blockmatrices then for $i := 0, \dots, m-1$ do for $j := 0, \dots, m-1$ do for $l := 0, \dots, m-1$ do mul(α , A_{il} , B_{lj} , β , C_{ij});

else

8:

$$C := \alpha AB + \beta C;$$

end;

Parallelisation: execute line 8 on different processors (online scheduling)

Collisions

Consider

$$\begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix} = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

Parallel execution of

$$C_{00} = C_{00} + A_{00}B_{00}$$
 and $C_{00} = C_{00} + A_{01}B_{10}$.

leads to collision and blocking of one processor.

Collisions

Consider

$$\begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix} = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

Parallel execution of

$$C_{00} = C_{00} + A_{00}B_{00}$$
 and $C_{00} = C_{00} + A_{01}B_{10}$.

leads to collision and blocking of one processor.

Solution:

 $\bullet\,$ simulate matrix multiplication to collect all products AB for a destination block C

Collisions

Consider

$$\begin{pmatrix} C_{00} & C_{01} \\ C_{10} & C_{11} \end{pmatrix} = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$

Parallel execution of

$$C_{00} = C_{00} + A_{00}B_{00}$$
 and $C_{00} = C_{00} + A_{01}B_{10}$.

leads to collision and blocking of one processor.

Solution:

- simulate matrix multiplication to collect all products AB for a destination block C
- execute list of products for each C on a different processor

Algorithm

procedure sim_mul(A, B, C) if A, B and C are blockmatrices then for $i := 0, \dots, m - 1$ do for $j := 0, \dots, m - 1$ do for $l := 0, \dots, m - 1$ do sim_mul(A_{il}, B_{lj}, C_{ij});

else

$$P_C := P_C \cup \{(A, B)\}; \mathcal{L}_{\mathrm{MM}} := \mathcal{L}_{\mathrm{MM}} \cup \{C\};$$

end;

Algorithm

procedure sim_mul(A, B, C) if A, B and C are blockmatrices then for $i := 0, \dots, m-1$ do for $j := 0, \dots, m-1$ do for $l := 0, \dots, m-1$ do sim_mul(A_{il}, B_{lj}, C_{ij});

else

$$P_C := P_C \cup \{(A, B)\}; \mathcal{L}_{MM} := \mathcal{L}_{MM} \cup \{C\};$$

end;

procedure mul_block(C) for all $(A,B) \in P_C$ do $C := C + \alpha AB;$

procedure par_mul($\alpha, \beta, \mathcal{L}_{MM}$) for all $C \in \mathcal{L}_{MM}$ do run(mul_block(C));

Complexity of parallel $\mathcal H$ -Matrix Multiplication

Using List scheduling:

$$\mathcal{W}_{MM}(n,p) = \mathcal{O}\left(\frac{n\log^2 n}{p}\right)$$

Complexity of parallel $\mathcal H$ -Matrix Multiplication

Using List scheduling:

$$\mathcal{W}_{MM}(n,p) = \mathcal{O}\left(\frac{n\log^2 n}{p}\right)$$

Numerical Results

n	t(1)	E(4)	E(8)	E(12)	E(16)
3 968	98.5 s	98.3 %	97.0 %	95.3 %	95.0 %
7 920	287.8 s	98.2 %	97.5 %	97.0 %	95.6 %
19320	945.5 s	99.0 %	97.7 %	96.9 %	96.2 %
43680	2817.2 s	99.1 %	98.2 %	97.1 %	96.1 %
89400	7432.7 s	100 %	99.5 %	99.0 %	97.6 %
184 040	19292.2 s	99.8 %	98.8 %	98.0 %	96.4 %

Matrix Inversion

Sequential Schur-complement algorithm for a 2×2 blockmatrix:

procedure invert(A, C, T) if A is a blockmatrix then

> invert(A_{00}, C_{00}, T_{00}); $T_{01} := C_{00}A_{01}; \quad T_{10} := A_{10}C_{00};$ $A_{11} := A_{11} - A_{10}T_{01};$ invert(A_{11}, C_{11}, T_{11}); $C_{01} := -T_{01}C_{11}; \quad C_{10} := -C_{11}T_{10};$ $C_{00} := C_{00} - T_{01}C_{10};$

else

 $C := A^{-1};$

endif;

end;

Matrix Inversion

Sequential Schur-complement algorithm for a 2×2 blockmatrix:

procedure invert(A, C, T) if A is a blockmatrix then invert(A_{00}, C_{00}, T_{00}); $T_{01} := C_{00}A_{01}$; $T_{10} := A_{10}C_{00}$; $A_{11} := A_{11} - A_{10}T_{01}$; invert(A_{11}, C_{11}, T_{11}); $C_{01} := -T_{01}C_{11}$; $C_{10} := -C_{11}T_{10}$; $C_{00} := C_{00} - T_{01}C_{10}$; else $C := A^{-1}$;

endif;

end;

Parallelisation: use parallel matrix multiplication for all 6 products

Complexity of Parallel $\mathcal H$ -Matrix Inversion

$$\mathcal{W}_{\mathrm{MI}}(n,p) = \mathcal{O}\left(n + \frac{n\log^2 n}{p}\right)$$

Complexity of Parallel $\mathcal H$ -Matrix Inversion

$$\mathcal{W}_{\mathrm{MI}}(n,p) = \mathcal{O}\left(n + \frac{n\log^2 n}{p}\right)$$

Numerical Results

n	t(1)	E(4)	E(8)	E(12)	E(16)
3 968	97.6 s	92.9 %	82.1 %	71.5 %	60.6 %
7 920	286.3 s	93.7 %	83.5 %	73.2 %	62.2 %
19320	939.2 s	94.5 %	83.7 %	73.3 %	63.8 %
43 680	2796.7 s	94.2 %	83.3 %	72.7 %	62.9 %
89 400	10106.2 s	94.9 %	83.8 %	73.2 %	63.8 %
184 040	19191.0 s	94.8 %	83.8 %	73.1 %	63.7 %

Conclusion

Speedup of parallel \mathcal{H} -matrix arithmetic

