
OpenMP

Kriemann, »Introduction to Parallel Programming« 1

1. Introduction
1.1. History
1.2. Hello World
1.3. Fork-Join Model
1.4. OpenMP Directives

2. Thread Creation
2.1. Nested Parallelism
2.2. Shared vs. Private Data
2.3. Thread Overhead

3. Parallelising Loops
3.1. Loop Restrictions
3.2. Loop Scheduling
3.3. Nested Loops
3.4. Reductions
3.5. Loop Synchronisation
3.6. Loop Serialisation
3.7. Combined Parallel Loops
3.8. Example: N-Body Problem

4. Sections
4.1. Combined Parallel Sections

5. Single Execution
5.1. Copyprivate Clause
5.2. Master Directive

6. Thread Synchronisation
6.1. Critical
6.2. Mutexes
6.3. Barrier
6.4. Atomic
6.5. Flush
6.6. Comparison

7. Task based Computations
7.1. Data Environment
7.2. Task Synchronisation
7.3. Task Scheduling
7.4. Final Clause
7.5. Example: LU Factorisation

8. Miscellanea
8.1. Thread Private Data
8.2. Thread Scheduling
8.3. If Clause
8.4. C++ Exceptions

History
Introduction

OpenMP started as a joined initiative of most of the major hardware and
software vendors to provide compiler support for parallel programs, with a main
focus on parallelising loops.

1997: OpenMP 1.0 for Fortran
1998: OpenMP 1.0 for C/C++
2000: OpenMP 2.0 for Fortran with fixes and clarifications
2002: OpenMP 2.0 for C/C++
2005: OpenMP 2.5 combining Fortran and C/C++
2008: OpenMP 3.0 introduces tasks
2011: OpenMP 3.1
2013: OpenMP 4.0rc2 with support for vector units and special targets

Beside the compiler directives (pragmas), OpenMP also contains a set of data
types and functions, imported via the header file omp.h.

All major C/C++ and Fortran compilers support OpenMP, with Clang being the
only important exception.

Kriemann, »Introduction to Parallel Programming« 3

Hello World
Introduction

The standard starting point for each programming lecture is:
#include <iostream>
int main () {

#pragma omp parallel
std::cout << "Hello, world!" << std::endl;

}

To enable OpenMP during compilation, a special compiler flag has to be
provided:

Intel Compiler

> icpc -openmp -o hello -c hello .cc

GNU Compiler

> g++ -fopenmp -o hello -c hello .cc

Possible program output on a Quad-Core CPU may then be:

Hello , world !
Hello , world !
Hello , world !
Hello , world !

Hello , world !Hello , world !Hello ,
world !

Hello , world !

Remark
The garbled output is due to a race condition between all threads competing for the
same output channel.

Kriemann, »Introduction to Parallel Programming« 4

Fork-Join Model
Introduction

The underlying model of OpenMP is the fork-join model :

A master thread creates a team of worker threads which run in parallel
together with the master thread until all worker threads finish.

The fork-join model is recursive: any thread in a team may create new threads,
which form a new team. This is known as nested parallelism.

The number of threads in a team is user defined and may vary between different
parallel sections of the program.

When all threads of a team are joined, a synchronisation takes place, i.e. the
master thread of the team will only proceed when all other team threads have
finished.

Kriemann, »Introduction to Parallel Programming« 5

Fork-Join Model
Introduction

The underlying model of OpenMP is the fork-join model :

A master thread creates a team of worker threads which run in parallel
together with the master thread until all worker threads finish.

The fork-join model is recursive: any thread in a team may create new threads,
which form a new team. This is known as nested parallelism.

The number of threads in a team is user defined and may vary between different
parallel sections of the program.

When all threads of a team are joined, a synchronisation takes place, i.e. the
master thread of the team will only proceed when all other team threads have
finished.

Kriemann, »Introduction to Parallel Programming« 5

OpenMP Directives
Introduction

OpenMP extends the underlying programming language by compiler directives.

Each OpenMP directive starts with the pragma

#pragma omp <directive> new-line

Remark
The new-line is mandatory!

The directive is applied to the immediately following source code block, i.e.
#pragma omp <directive>
{

...
}

or just
#pragma omp <directive>

...

in case of a single-line block.

After the source code block, the worker threads of the thread team will stop and
only the master thread will proceed.

Kriemann, »Introduction to Parallel Programming« 6

OpenMP Directives
Introduction

Two important concepts appear in the context of OpenMP directives.

Construct
The construct of an OpenMP directive includes only the block of source code
directly following the directive.

Region
The (parallel) region of an OpenMP directive is the set of all code executed by a
thread of the created team. This also includes all code executed in called
functions.

void f () {
... // part of the region but NOT the construct

}

#pragma omp <directive>
{

... // construct of the directive
f();
...

}

Kriemann, »Introduction to Parallel Programming« 7

OpenMP Directives
Introduction

Parallel vs Sequential Mode
In case OpenMP is not supported or explicitly turned off during compilation, all
OpenMP directives will be ignored and the output is a standard sequential
program.
> g++ -Wall -o hello hello .cc
hello .cc :5:0: warning : ignoring #pragma omp parallel [-Wunknown - pragmas]

Most OpenMP implementations will support parallel and sequential mode of
programs containing OpenMP directives. Albeit, it is legal to develop a program,
which will only work correctly in parallel mode!
Furthermore, the output of the program may vary between sequential and
parallel mode.

Kriemann, »Introduction to Parallel Programming« 8

Thread Creation

Kriemann, »Introduction to Parallel Programming« 9

Thread Creation
A new team of threads is created by the directive

#pragma omp parallel [clause1 [[,] clause2, ...]]

The thread, which initially encounters the parallel directive is called the
master thread and furthermore, becomes the parent thread to all threads in the
newly created team.
void f () {

... // executed by master thread
#pragma omp parallel
{
... // executed by team

}
... // executed by master thread

}

master
parent

team

master

Kriemann, »Introduction to Parallel Programming« 10

Thread Creation
The default number of threads in the team (including the master thread) is
chosen by the OpenMP library, and usually equal to the number of processors
(cores) in the system.

Instead of this, the following options may be used to change the number of team
threads:

• With the clause num_threads():
#pragma omp parallel num_threads(4)

• With the function omp_set_num_threads():
#include <omp.h>
int main () {
omp_set_num_threads(4);
#pragma omp parallel
{ ... }

}

• Using the environment variable OMP_NUM_THREADS:
> export OMP_NUM_THREADS=4 # bash

or
> setenv OMP_NUM_THREADS 4 # tcsh

Kriemann, »Introduction to Parallel Programming« 11

Thread Creation
Remark
A typical programming mistake is to forget the parallel directive:

int main () {
#pragma omp // no "parallel"
{
...

}
}

In this case, no new threads are created and the construct will be executed by the
master thread alone, i.e. sequential execution.

Thread ID
Each thread of a team has an id < p which is unique for the corresponding
parallel region. The master thread will always have id 0.
This id may be obtained using the function omp_get_thread_num():
#include <omp.h>
int main () {

#pragma omp parallel
{
const int thread_id = omp_get_thread_num();
...

}
}

Kriemann, »Introduction to Parallel Programming« 12

Thread Creation
Remark
A typical programming mistake is to forget the parallel directive:

int main () {
#pragma omp // no "parallel"
{
...

}
}

In this case, no new threads are created and the construct will be executed by the
master thread alone, i.e. sequential execution.

Thread ID
Each thread of a team has an id < p which is unique for the corresponding
parallel region. The master thread will always have id 0.
This id may be obtained using the function omp_get_thread_num():
#include <omp.h>
int main () {

#pragma omp parallel
{
const int thread_id = omp_get_thread_num();
...

}
}

Kriemann, »Introduction to Parallel Programming« 12

Nested Parallelism
Thread Creation

The parallel directive may also be nested :
void f () {

#pragma omp parallel
{
...
#pragma omp parallel
{
...

}
...

}
}

Usually, this nested mode has to be enabled explicitly using either the
environment variable OMP_NESTED:
> export OMP_NESTED=TRUE # bash
> setenv OMP_NESTED TRUE # tcsh

or with the OpenMP function omp_set_nested():
omp_set_nested(true);

If nested parallelism is not enabled, the nested directives will be handled by only
one thread, i.e. sequentially.

Kriemann, »Introduction to Parallel Programming« 13

Nested Parallelism
Thread Creation

Since, by default, the number of threads for a parallel region equals the number
of processors, the second parallel region will not spawn new threads.

Hence, nested parallel regions should be used together with the num_threads
clause:
void f () {

#pragma omp parallel num_threads(4)
{
...
#pragma omp parallel num_threads(2)
{
...

}
...

}
}

Here, each of the 4 worker threads will create a new team with 2 threads each,
i.e. the inner construct is executed by 8 threads.

Kriemann, »Introduction to Parallel Programming« 14

Nested Parallelism
Thread Creation

Nested parallelism may be used within the whole region of a parallel directive:
void g () {

#pragma omp parallel // inside parallel region of f()
{
...

}
}

void f () {
#pragma omp parallel
{
...
g();
...

}
}

This also allows recursive computations to be handled by nested parallel regions:
void f () {

#pragma omp parallel num_threads(2)
{
f();

}
}

Here, each call of f() will spawn 2 new threads until all processors are used.

Kriemann, »Introduction to Parallel Programming« 15

Shared vs. Private Data
Thread Creation

All data defined in the surrounding block of a parallel construct is shared by all
threads.

Data defined within a parallel construct is private to a specific thread.

At line 4, the variables n, x and s are
defined. In the parallel construct 5-12, these
variables are shared by all threads.
The variables s2 and i are defined within
the parallel construct and are therefore,
private to each thread.

1 void f (int n, double ∗ x) {
2 double s = 0.0;
3
4 #pragma omp parallel
5 {
6 double s2 = 0;
7
8 for (int i = 0; i < n; ++i)
9 s2 += x[i];
10
11 s = s+s2;
12 }
13 }

function f
n, x, s

thread 0

s2,i

thread 1

s2,i

thread 2

s2,i

thread 3

s2,i

Kriemann, »Introduction to Parallel Programming« 16

Shared vs. Private Data
Thread Creation

Any change to a shared variable will affect all threads of the thread team, and
hence, defines a critical section.

1 void f (int n, double ∗ x) {
2 double s = 0.0;
3
4 #pragma omp parallel
5 {
6 double s2 = 0;
7
8 for (int i = 0; i < n; ++i)
9 s2 += x[i];

10
11 s = s+s2;
12 }
13 }

In the example, at line 11 the shared variable s is updated, yielding a race
condition.

In the for loop at lines 8 and 9, the shared variables n and x are accessed
read-only. As long as the content of both variables is not changed by a thread,
such accesses are uncritical.

Kriemann, »Introduction to Parallel Programming« 17

Shared and Default Clause
Shared vs. Private Data

With the clause

#pragma omp parallel shared(x1,x2,...)

a list of variables is defined, which exist in the scope of the code block before
entering the parallel construct and which should be shared within the parallel
construct.

Since by default, all such variables are shared, the statement would normally
have no effect.

This standard behaviour can be changed by the clause

#pragma omp parallel default(shared|none)

with

default(shared): representing the default behaviour, i.e. variables are shared,
default(none): disable automatic variable sharing.

In the latter case, the status of any non-private variable referenced within the
parallel construct has to be defined explicitly, e.g. by the shared clause.

Kriemann, »Introduction to Parallel Programming« 18

Shared and Default Clause
Shared vs. Private Data

The combination of both clauses allows to limit the risk of unwanted side effects,
e.g. if shared variables are erroneously accessed:
void f (int n, double ∗ x) {

double x1[10], x2[100];
double s = 0.0;

#pragma omp parallel default(none) shared(n,x,s)
{
double s2 = 0;
for (int i = 0; i < n; ++i)
s2 += x1[i]; // error reported by compiler

s = s+s2;
}

}

Without default and shared, the compiler would not report any error.

Kriemann, »Introduction to Parallel Programming« 19

Private Clause
Shared vs. Private Data

Outside variables may also be declared private for parallel constructs:

#pragma omp parallel private(var1,var2,...)

For each variable listed in the private clause, a new thread-private variable is
created but not initialised . In particular, the thread-private copy will not have
the same value as the variable in the surrounding scope.

This clause is therefore useful for automatic creation of thread-private variables,
which are mainly used for local work and not for data sharing.

Some limitations apply to the private clause:

• The private variable must not appear inside a compound
struct { double real, imag; } c;

#pragma omp parallel private(c.real) // illegal: struct member

or array data structure
double y[10];

#pragma omp parallel private(y[5]) // illegal: array member

Kriemann, »Introduction to Parallel Programming« 20

Private Clause
Shared vs. Private Data

• The variable must not be declared const.
const double x = 1.0;
#pragma omp parallel private(x) // illegal: const variable

The only exception are classes with mutable members.
const struct {
double x;
mutable const n;

} s;

#pragma omp parallel private(s) // legal: s.n is mutable

• If the variable is a class, an accessible default constructor must exist.
struct A {
double x, y;

A (double x, double y);

private:
A ();

};

A a(1, 2);

#pragma omp parallel private(a) // illegal: A() is not accessible

• Reference types are not allowed.
void f (double & y) {
#pragma omp parallel private(y) // illegal: reference type
...

}

Kriemann, »Introduction to Parallel Programming« 21

Private Clause
Shared vs. Private Data

Construct vs. Region
The private clause applies to an OpenMP construct. It is not defined how the
access to a variable is handled in the remaining parallel region.
int n;

void f (int i) {
n = i; // undefined, may refer to private or global variable

}
int main () {

#pragma omp parallel private(n)
{
n = 1; // refers to private variable
f(2);

}
}

Access to the Original Variable
The original variable of a private copy may still be accessed in the parallel region,
e.g. via pointers:
void f (int i) {

int ∗ i_ptr = & i;

#pragma omp parallel private(i)
{
i = 1; // refers to the private variable
∗i_ptr = 2; // refers to the original variable

}
}

Kriemann, »Introduction to Parallel Programming« 22

Private Clause
Shared vs. Private Data

Construct vs. Region
The private clause applies to an OpenMP construct. It is not defined how the
access to a variable is handled in the remaining parallel region.
int n;

void f (int i) {
n = i; // undefined, may refer to private or global variable

}
int main () {

#pragma omp parallel private(n)
{
n = 1; // refers to private variable
f(2);

}
}

Access to the Original Variable
The original variable of a private copy may still be accessed in the parallel region,
e.g. via pointers:
void f (int i) {

int ∗ i_ptr = & i;

#pragma omp parallel private(i)
{
i = 1; // refers to the private variable
∗i_ptr = 2; // refers to the original variable

}
}

Kriemann, »Introduction to Parallel Programming« 22

Firstprivate Clause
Shared vs. Private Data

To initialise private variables with the value the variable has outside the parallel
construct the clause firstprivate is provided:

#pragma omp parallel firstprivate(var1,var2,...)

The initialisation of each variable is performed before the parallel construct is
executed.

Variables of elementary data types are initialised with standard copy assignments,
whereas arrays are initialised element wise. For classes the copy constructor is
used.

The same restrictions as for the private clause apply to the firstprivate
clause.

Kriemann, »Introduction to Parallel Programming« 23

Thread Overhead
Thread Creation

Spawning and finishing threads creates overhead, e.g. the operating system has
to copy internal data for managing threads etc..

As an example, the following program which uses C++11 threads will take
33 seconds to run on a 2-CPU Intel Xeon E5-2640 (Hexa-Core):
for (size_t i = 0; i < 100000; ++i) {

for (int p = 0; p < 12; ++p) threads[p] = std::thread(f);
for (int p = 0; p < 12; ++p) threads[p].join();

}

In contrast to this, the equivalent OpenMP version:
for (size_t i = 0; i < 100000; ++i) {

#pragma omp parallel
{

f();
}

}

only takes 0.6 seconds.

The reason for this difference is, that OpenMP will not spawn new threads for
each parallel directive, but instead keep a pool of threads running all the time
and only assign the corresponding tasks to these threads. Nevertheless, the
actual task should have some minimal runtime for efficient OpenMP
parallelisation.

Kriemann, »Introduction to Parallel Programming« 24

Parallelising Loops

Kriemann, »Introduction to Parallel Programming« 25

Parallelising Loops
Initially, OpenMP was focused on parallelising loops.

The corresponding directive is

#pragma omp for [clause1 [[,] clause2, ...]]

and applies to the immediately following for loop:
#pragma omp for
for (size_t i = 0; i < n; ++i) {

...
}

Furthermore, the for directive must be inside the region of a parallel
construct:
#pragma omp parallel
{

#pragma omp for
for (size_t i = 0; i < n; ++i) {
...

}
}

The loop will then be split automatically into individual chunks, which are
mapped to the threads of the current team, e.g. each worker thread will handle
n/p indices of the for loop.

Kriemann, »Introduction to Parallel Programming« 26

Parallelising Loops
Remark
Common mistakes for the for directive are

• Forgotton parallel clause, which results in sequential execution:

// no "parallel" directive
{
#pragma omp for
for (size_t i = 0; i < n; ++i) {

...
}

}

• Forgotton for keyword, in which case all threads will execute the whole loop:

#pragma omp parallel
{
#pragma omp // no "for" directive
for (size_t i = 0; i < n; ++i) {

...
}

}

Unfortunately, the compiler will not warn about such errors.

Kriemann, »Introduction to Parallel Programming« 27

Parallelising Loops
Example: Matrix Multiplication

Let A, B, C ∈ Rn×n and compute the product C = A ·B:
void mat_mul (const size_t n, const Matrix & A, const Matrix & B, Matrix & C) {

#pragma omp parallel
#pragma omp for
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
double c_ij = 0;

for (size_t k = 0; k < n; ++k)
c_ij += A(i,k) ∗ B(k,j);

C(i,j) = c_ij;
} } }

For n = 1000 on a 2-CPU Intel Xeon E5-2640 this yields:

1 2 4 6 8 10 12
#threads

2

4

6

8

10

12

S
p
e
e
d
u
p

1 2 4 6 8 10 12
#threads

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

1 2 4 6 8 10 12
#threads

2

4

6

8

10

12

S
p
e
e
d
u
p

best

worst

1 2 4 6 8 10 12
#threads

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

best

worst

Kriemann, »Introduction to Parallel Programming« 28

Parallelising Loops
Example: Matrix Multiplication

Let A, B, C ∈ Rn×n and compute the product C = A ·B:
void mat_mul (const size_t n, const Matrix & A, const Matrix & B, Matrix & C) {

#pragma omp parallel
#pragma omp for
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
double c_ij = 0;

for (size_t k = 0; k < n; ++k)
c_ij += A(i,k) ∗ B(k,j);

C(i,j) = c_ij;
} } }

For n = 1000 on a 2-CPU Intel Xeon E5-2640 this yields:

1 2 4 6 8 10 12
#threads

2

4

6

8

10

12

S
p
e
e
d
u
p

1 2 4 6 8 10 12
#threads

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

1 2 4 6 8 10 12
#threads

2

4

6

8

10

12

S
p
e
e
d
u
p

best

worst

1 2 4 6 8 10 12
#threads

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

best

worst

Kriemann, »Introduction to Parallel Programming« 28

Loop Restrictions
Parallelising Loops

The data type of the index variable must be

• a signed or unsigned integer type, e.g. int or size_t
#pragma omp for
for (size_t i = 0; i < n; ++i) {
...

}

• a random access iterator, e.g. for std::vector (not for std::list!)
#pragma omp for
for (std::vector< double >::iterator iter = x.begin(); iter != x.end(); ++iter) {
...

}

• a pointer type
#pragma omp for
for (double ∗ p = & x[0]; p < & x[n]; ++p) {
...

}

Kriemann, »Introduction to Parallel Programming« 29

Loop Restrictions
Parallelising Loops

Only constant index changes are supported, e.g. i++, –i or i += 5.
#pragma omp for
for (size_t i = 0; i < n; i = 2*i) { // error

...
}

Changing the index variable inside the loop body is not allowed.
#pragma omp for
for (size_t i = 0; i < n; ++i) {

...
i += 2; // error
...

}

The loop test must be simple, e.g. i < n or i >= n.
#pragma omp for
for (size_t i = 0; i < n && i > n/2; ++i) { // error

...
}

Also, C++11 range-based loops are not supported:
#pragma omp for
for (auto & v : vec) { // error

...
}

Kriemann, »Introduction to Parallel Programming« 30

Loop Restrictions
Parallelising Loops

Due to the implicit barrier at the end of the construct, all team threads must
encounter the for directive during their execution or none at all:
#pragma omp parallel
{

if (do_loop()) { // conditional loop execution
#pragma omp for
for (...) {
...

}
}

}

Here, do_loop has to return the same values for all threads. Otherwise, the
program may block because of the barrier.

Even if the barrier is removed using nowait, the resulting program is
non-conforming and may not work correctly.

Kriemann, »Introduction to Parallel Programming« 31

Loop Scheduling
Parallelising Loops

When encountering a for loop:
#pragma omp for
for (size_t i = 0; i < n; ++i) {

...
}

the range of the loop index is split into chunks of (almost) equal size, each
forming a task. These tasks are then assigned to the threads of the team.

The typical chunk size is n/p, e.g. the loop range is split as:

This static scheduling can be changed by the schedule clause:

#pragma omp for schedule(static|dynamic|guided|auto|runtime)

For static, dynamic and guided an optional chunk size may be specified:

#pragma omp for schedule(static|dynamic|guided [, chunksize])

Kriemann, »Introduction to Parallel Programming« 32

Loop Scheduling
Parallelising Loops

When encountering a for loop:
#pragma omp for
for (size_t i = 0; i < n; ++i) {

...
}

the range of the loop index is split into chunks of (almost) equal size, each
forming a task. These tasks are then assigned to the threads of the team.

The typical chunk size is n/p, e.g. the loop range is split as:

This static scheduling can be changed by the schedule clause:

#pragma omp for schedule(static|dynamic|guided|auto|runtime)

For static, dynamic and guided an optional chunk size may be specified:

#pragma omp for schedule(static|dynamic|guided [, chunksize])

Kriemann, »Introduction to Parallel Programming« 32

Loop Scheduling
Parallelising Loops

The definition of the different scheduling algorithms is:

static: Divide the loop range into chunks of size chunksize and assign the
resulting task to the team threads in a round-robin fashion:

If no chunksize is specified, the default size is ≈ n/p.

dynamic: Divide the loop range into chunks of size chunksize. Tasks are
assigned as each thread requests them one after the other:

If no chunksize is specified, the default size is 1.

guided: Start by building chunks of a size ≥ chunksize proportional to the
unassigned indices. Tasks are assigned as each thread requests them.

If no chunksize is specified, the default size is 1.

Kriemann, »Introduction to Parallel Programming« 33

Loop Scheduling
Parallelising Loops

Further scheduling types are:

auto: Let the compiler or runtime system decide about best scheduling.

runtime: The runtime system decides about best scheduling.

In case of runtime scheduling, the user may change the default behaviour using
the OMP_SCHEDULE environment variable, which should contain one of the above
scheduling types:
> export OMP_SCHEDULE="static,16" # bash

or
> setenv OMP_SCHEDULE "dynamic" # tcsh

Remark
The environment variable OMP_SCHEDULE applies to all for directives in the program
using auto or runtime scheduling, e.g. no control of single loops is possible.

Kriemann, »Introduction to Parallel Programming« 34

Loop Scheduling
Parallelising Loops

If the work per loop index is equal, static scheduling yields an optimal load
balance between all team threads.

Example: Matrix-Vector Multiplication

Let A ∈ Rn×n and x, y ∈ Rn. Compute y = A · x:

void mat_vec (const size_t n, const Matrix & A,
const Vector & x, Vector & y) {

#pragma omp parallel
#pragma omp for schedule(• • •)
for (size_t i = 0; i < n; ++i) {
double y_i = 0;
for (size_t k = 0; k < n; ++k)
y_i += A(i,k) ∗ x(k);

y(i) = y_i;
}

}
1 2 3 4 5 6

#threads
1

2

3

4

5

6

S
p
e
e
d
u
p

static

dynamic

guided

The performance of dynamic and guided scheduling is due to the additional
overhead induced by assigning tasks to threads during runtime.

If the work per task is increased, this overhead can often be neglected, e.g.
increasing the above dimension n by a factor of 4 yields the same speedup for all
scheduling schemes.

Kriemann, »Introduction to Parallel Programming« 35

Loop Scheduling
Parallelising Loops

The situation changes, if the work is unevenly distributed with respect to the
loop index.

Example: Triangular Matrix-Vector Multiplication

Let A ∈ Rn×n be a lower triangular matrix and x, y ∈ Rn. Compute y = A · x:

void mat_vec (const size_t n, const Matrix & A,
const Vector & x, Vector & y) {

#pragma omp parallel
#pragma omp for schedule(• • •)
for (size_t i = 0; i < n; ++i) {
double y_i = 0;
for (size_t k = 0; k <= i; ++k)
y_i += A(i,k) ∗ x(k);

y(i) = y_i;
}

}
1 2 3 4 5 6

#threads
1

2

3

4

5

6

S
p
e
e
d
u
p

static

dynamic

guided

A static mapping leads to an unbalanced load between all threads since the load
increases with the loop index.

In contrast to this, with dynamic or guided scheduling more tasks are
constructed such that idling threads may request more work, yielding a more
even load balance.

Kriemann, »Introduction to Parallel Programming« 36

Loop Scheduling
Parallelising Loops

Remark
For the matrix-vector multiplication, the default static mapping corresponds to a
row-wise block decomposition:

#pragma omp for
for (size_t i = 0; i < n; ++i) {

for (size_t k = 0; k < n; ++k)
y(i) += A(i,k) ∗ x(k);

}

By specifying a chunk size, this can be changed to a cyclic row-wise block
decomposition, which would also result in a better load balance in the triangular matrix
case:

#pragma omp for schedule(static,4)
for (size_t i = 0; i < n; ++i) {

for (size_t k = 0; k < n; ++k)
y(i) += A(i,k) ∗ x(k);

}

Dynamic or guided scheduling corresponds to a randomised block decomposition and is
an example of Online Scheduling.

Kriemann, »Introduction to Parallel Programming« 37

Loop Scheduling
Parallelising Loops

Remark
For the matrix-vector multiplication, the default static mapping corresponds to a
row-wise block decomposition:

#pragma omp for
for (size_t i = 0; i < n; ++i) {

for (size_t k = 0; k < n; ++k)
y(i) += A(i,k) ∗ x(k);

}

By specifying a chunk size, this can be changed to a cyclic row-wise block
decomposition, which would also result in a better load balance in the triangular matrix
case:

#pragma omp for schedule(static,4)
for (size_t i = 0; i < n; ++i) {

for (size_t k = 0; k < n; ++k)
y(i) += A(i,k) ∗ x(k);

}

Dynamic or guided scheduling corresponds to a randomised block decomposition and is
an example of Online Scheduling.

Kriemann, »Introduction to Parallel Programming« 37

False Sharing
Loop Scheduling

If the chunk size in the schedule clause is too small, false sharing may happen:
std::vector< double > x(n);

#pragma omp parallel
#pragma omp for schedule(static,1)
for (size_t i = 0; i < n; ++i)

x[i] = f(i);

Here, each index position is cyclically scheduled to a different thread:

cache line

Hence the update of the corresponding array entries will affect the cache lines of
several other threads. Depending on the runtime for each call of f, this may
severely limit the parallel speedup:

chunk size
default 1 16 128

static 10.09 7.89 10.01 10.33
dynamic 0.51 0.51 6.82 10.17
guided 10.23 10.23 10.28 10.36

Speedup on 2-CPU Xeon E5-2640
Kriemann, »Introduction to Parallel Programming« 38

Nested Loops
Parallelising Loops

Since parallel directives may be nested, this also applies to nested loops.

In the matrix multiplication algorithm, the two outer loops apply to independent
parts of the destination matrix C. Hence, these should be natural candidates for
nested parallel loops:
void mat_mul (const size_t n, const Matrix & A, const Matrix & B, Matrix & C) {

#pragma omp parallel num_threads(2)
#pragma omp for
for (size_t i = 0; i < n; ++i) {
#pragma omp parallel num_threads(2) // nested, parallel loop
#pragma omp for
for (size_t j = 0; j < n; ++j) {
double c_ij = 0;

for (size_t k = 0; k < n; ++k)
c_ij += A(i,k) ∗ B(k,j);

C(i,j) = c_ij;
} } }

In this example, the rows and the columns will be split in half and 4 threads will
handle the corresponding inner dot product computations in parallel.

Kriemann, »Introduction to Parallel Programming« 39

Nested Loops
Parallelising Loops

Unfortunately, the scheduling of the second loop, e.g. the columns, is applied to
each row individually :

nested and schedule(static) nested and schedule(dynamic,8)

This may induce a significant scheduling overhead. For the matrix multiplication
example, especially for small dimensions, this overhead severly limits the parallel
efficiency.

50 100 200 400 800 1600 3200
Matrix Size

10-5

10-4

10-3

10-2

10-1

100

101

102

R
u
n
ti

m
e

nested

not nested

Kriemann, »Introduction to Parallel Programming« 40

Nested Loops
Parallelising Loops

Since the previous loops result in independent computations, both loops form a
larger iteration space over rows and columns together.

OpenMP supports such loop collapsing via the collapse clause:

#pragma omp for collapse(n)

where n specifies the number of nested loops to collapse.

The loops must be perfectly nested and not depend on each other, e.g.
#pragma omp for collapse(2)
for (size_t i = 0; i < n; ++i) {

for (size_t j = 0; j < n; ++j) {
...

}
for (size_t j = 0; j < n; ++j) { // not perfectly nested
...

}
}

or
#pragma omp for collapse(2)
for (size_t i = 0; i < n; ++i) {

for (size_t j = 0; j < i; ++j) { // loop dependence
...

} }

are not allowed.
Kriemann, »Introduction to Parallel Programming« 41

Nested Loops
Parallelising Loops

For the matrix multiplication, the outer loops are perfectly nested and
independent, hence, they may be collapsed as an alternative to nested
parallelism:
void mat_mul (const size_t n, const Matrix & A, const Matrix & B, Matrix & C) {

#pragma omp parallel num_threads(4)
#pragma omp for collapse(2)
for (size_t i = 0; i < n; ++i) {
for (size_t j = 0; j < n; ++j) {
double c_ij = 0;

for (size_t k = 0; k < n; ++k)
c_ij += A(i,k) ∗ B(k,j);

C(i,j) = c_ij;
} } }

The resulting mapping depends on the specified scheduling and especially the
chunk size:

collapse(2) collapse(2) schedule(static,8) collapse(2) schedule(static,12)

Kriemann, »Introduction to Parallel Programming« 42

Nested Loops
Parallelising Loops

As the scheduling is now applied to all rows and columns simultaneously, the
additional overhead of the nested parallelism is eliminated:

50 100 200 400 800 1600 3200
Matrix Size

10-5

10-4

10-3

10-2

10-1

100

101

102

R
u
n
ti

m
e

nested

not nested

collapsed

Kriemann, »Introduction to Parallel Programming« 43

Nested Loops
Parallelising Loops

Especially for nested loops with small loop ranges the collapse clause useful to
enlarge the iteration space and thereby, decrease the granularity and increase the
number of tasks:
for (size_t i = 0; i < n; ++i) {

for (size_t j = 0; j < n; ++j) {
for (size_t k = 0; k < n; ++k) {
for (size_t l = 0; l < n; ++l) {
compute(i, j, k, l);

} } } }

A single for directive for the outer most loop would permit at most n threads.
With the collapse clause, n4 threads can be used efficiently:

2 4 8 12 16 20 24
n

5

10

15

20

25

S
p
e
e
d
u
p

default

collapse(4)

Speedup on 2-CPU Intel Xeon E5-2640
Kriemann, »Introduction to Parallel Programming« 44

Reductions
Parallelising Loops

Reduction operations are supported by OpenMP by the reduction clause:

#pragma omp for reduction(op: var1, ...)

For each variable of a reduction clause, a thread-private copy is created and
initialised. The values of all private variables are combined at the end of the loop
using the specified operator.

Example: Dot Product

Compute
∑

i
xi · yi for x, y ∈ Rn:

void dot (const size_t n, double const ∗ x, double const ∗ y) {
double sum = 0.0;

#pragma omp parallel
#pragma omp for reduction(+: sum)
for (size_t i = 0; i < n; ++i)
sum += x[i] ∗ y[i]; // "sum" is private

return sum;
}

Since each copy of the reduction variable is thread-private, the variable update
does not form a critical section.

Kriemann, »Introduction to Parallel Programming« 45

Reductions
Parallelising Loops

Supported operators are:

+/–/*, min/max, &/|/ˆ, &&/||

The order in which the private copies are combined is not defined, e.g. different
results may be computed in different runs of the program:
#pragma omp parallel for reduction(+: sum)
for (size_t i = 1; i < n; ++i) {

sum += std::pow(−1.0,i+1) / double(i);
}

may yield
> reduction
6.9319718305994504e -01
> reduction
6.9319718305994582e -01
> reduction
6.9319718305994626e -01

Kriemann, »Introduction to Parallel Programming« 46

Reductions
Parallelising Loops

Multiple Reductions
More than one reduction clause is supported for a single loop, e.g.
#pragma omp parallel for reduction(+: sum) reduction(*: prod)
for (size_t i = 0; i < n; ++i) {

sum = sum + ... ;
prod = prod ∗ ... ;

}

Restrictions
Some restrictions apply to the reduction clause:

• A reduction variable must be shared in the surrounding parallel region.
• A reduction variable must not appear in multiple reduction clauses.
• A reduction variable must not be declared const.
• Compound types are not supported.

Kriemann, »Introduction to Parallel Programming« 47

Reductions
Parallelising Loops

Multiple Reductions
More than one reduction clause is supported for a single loop, e.g.
#pragma omp parallel for reduction(+: sum) reduction(*: prod)
for (size_t i = 0; i < n; ++i) {

sum = sum + ... ;
prod = prod ∗ ... ;

}

Restrictions
Some restrictions apply to the reduction clause:

• A reduction variable must be shared in the surrounding parallel region.
• A reduction variable must not appear in multiple reduction clauses.
• A reduction variable must not be declared const.
• Compound types are not supported.

Kriemann, »Introduction to Parallel Programming« 47

Reductions
Parallelising Loops

Remark
The reduction clause is also available for the parallel directive without a loop, hence
the following implementation is equivalent to the previous parallel dot product:

void dot (const size_t n, double const ∗ x, double const ∗ y) {
double sum = 0.0;

#pragma omp parallel reduction(+: sum)
#pragma omp for
for (size_t i = 0; i < n; ++i)
sum += x[i] ∗ y[i];

return sum;
}

The difference is, that instead of combining the values at the end of the loop, the
reduction is performed at the end of the parallel region.

Kriemann, »Introduction to Parallel Programming« 48

Loop Synchronisation
Parallelising Loops

By default, threads will synchronise with the end of the loop, e.g. all threads will
wait for all others to finish their computations.

Using the nowait clause, this implicit barrier can be eliminated:

#pragma omp for nowait

A typical application of this clause is several loops with an uneven load per task:
#pragma omp parallel
{

#pragma omp for nowait
for (size_t i = 0; i < n; ++i) {
...

}

#pragma omp for nowait
for (size_t j = 0; j < m; ++j) {
...

}

#pragma omp for nowait
for (size_t l = 0; l < k; ++l) {
...

}
}

Here, the team threads may proceed to the next loop without waiting for other
threads.

Kriemann, »Introduction to Parallel Programming« 49

Loop Synchronisation
Parallelising Loops

Reduction without Barrier
If nowait is used for a loop with a reduction clause, a race condition will
occur if the reduction variable is accessed outside the loop:
#pragma omp parallel
{

double sum = 0;

#pragma omp for nowait reduction(+: sum)
for (size_t i = 0; i < n; ++i) {
...

}

f(sum); // race condition
}

Since not all updates to sum may have been applied, the corresponding value is
undefined.

Kriemann, »Introduction to Parallel Programming« 50

Loop Serialisation
Parallelising Loops

Using the ordered clause together with a corresponding block, some part of the
loop body may be executed sequentially in the order defined by the loop index:

#pragma omp for ordered
for (...)
{
... // parallel region
#pragma omp ordered
{

... // ordered, sequential region
}
... // parallel region

}

Since the code within the ordered region is executed in loop order, threads will
wait at the entry to the ordered region until the ordered region of all previous
iterations have been completed.

Code before the ordered region is not affected by this and may be executed as
soon as the corresponding task is mapped to a thread.

Due to this serialisation, ordered blocks should contain only fast computations
and be used only at the end of a loop.

Kriemann, »Introduction to Parallel Programming« 51

Loop Serialisation
Parallelising Loops

Using the ordered clause, deterministic behaviour can be enforced:
#pragma omp for ordered reduction(+: global_val)
for (size_t i = 0; i < n; ++i)
{

const double local_val = compute_value();

#pragma omp ordered
global_val += local_val; // sum up in sequential order
}

}

It is also usefull for printing intermediate values, e.g. for debugging:
#pragma omp for ordered
for (size_t i = 0; i < n; ++i)
{

value = compute_value();

#pragma omp ordered
std::cout << value << std::endl;

}

Otherwise, access to the I/O channel induces a race condition which will lead to
scrambled output.

Kriemann, »Introduction to Parallel Programming« 52

Loop Serialisation
Parallelising Loops

Restriction
During the iteration of a loop, each thread must executed at most one ordered
block, i.e. the following code is not allowed:
#pragma omp for ordered
for (...)
{

#pragma omp ordered
{ ... }
#pragma omp ordered // error
{ ... }

}

However,
#pragma omp for ordered
for (...)
{
if (condition) {
#pragma omp ordered
{ ... }

} else {
#pragma omp ordered
{ ... }

}
}

is legal code, since only one ordered block is executed.

Kriemann, »Introduction to Parallel Programming« 53

Loop Serialisation
Parallelising Loops

Loop Scheduling and ordered
Using the default static scheduling together with ordered blocks will often
prevent parallel execution, since neighboured indices are executed by the same
thread in order .
For example, the following loop is executed almost sequentially while using 4
threads:

#pragma omp for schedule(static) ordered
for (size_t i = 0; i < 16; ++i)
{

double x = f();

#pragma omp ordered
std::cout << x << std::endl;

}

0 1 2 3
4 5 6 7

8 9 10 11
12 13 14 15

With dynamic scheduling (or “static,1”) all threads run in parallel:

#pragma omp for schedule(dynamic) ordered
for (size_t i = 0; i < 16; ++i)
{

double x = f();

#pragma omp ordered
std::cout << x << std::endl;

}

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

Kriemann, »Introduction to Parallel Programming« 54

Loop Serialisation
Parallelising Loops

Remark
A common programming mistake is to forget an ordered block although the ordered
clause was specified:

int main () {
#pragma omp parallel
#pragma omp for ordered
for (...)
{
... // no "ordered" block

}
}

Kriemann, »Introduction to Parallel Programming« 55

Combined Parallel Loops
Parallelising Loops

Since parallel construct often contain a single loop, both directives may be joined
into a single OpenMP directive:

#pragma omp parallel for

which replaces the separate statements:
#pragma omp parallel
#pragma omp for

All clauses of both the parallel and the for directive may be used as classes
for the combined directive.

The only exception is the nowait clause, which is only supported for separate
for directives.

Kriemann, »Introduction to Parallel Programming« 56

Example: N-Body Problem
Parallelising Loops

The implementation of the N-body program using the SOA approach mainly
consists of the timestep, updating the velocity and position of all particles:

1 void timestep (const double dt) {
2 for (size_t i = 0; i < n_particles; ++i) {
3 const vector3_t pos_i(pos_x[i], pos_y[i], pos_z[i]);
4 vector3_t force;
5
6 #pragma vector always // for auto−vectorisation
7 for (size_t j = 0; j < n_particles; ++j) {
8 if (i != j) {
9 const vector3_t pos_j(pos_x[j], pos_y[j], pos_z[j]);

10 const vector3_t dist(pos_j− pos_i);
11
12 force.add(mass[j] / dist.norm_cubed(), dist);
13 }
14 }
15
16 vel_x[i] += dt ∗ force.x;
17 vel_y[i] += dt ∗ force.y;
18 vel_z[i] += dt ∗ force.z;
19 }
20
21 #pragma ivdep // for auto−vectorisation
22 for (size_t i = 0; i < n_particles; ++i) {
23 pos_x[i] += dt ∗ vel_x[i];
24 pos_y[i] += dt ∗ vel_y[i];
25 pos_z[i] += dt ∗ vel_z[i];
26 }
27 }

The main work is done in the two loops at line 2 and 7, respectively.

Kriemann, »Introduction to Parallel Programming« 57

Example: N-Body Problem
Parallelising Loops

The outer loop and the update loop are candidates for OpenMP loop
parallelisation. The inner loop at line 7 performs a reduction w.r.t. the
compound variable force, for which OpenMP reduction is not directly possible.
void timestep (const double dt) {

#pragma omp parallel
{
#pragma omp for
for (size_t i = 0; i < n_particles; ++i) {
const vector3_t pos_i(pos_x[i], pos_y[i], pos_z[i]);
vector3_t force;

#pragma vector always
for (size_t j = 0; j < n_particles; ++j) {
if (i != j) {

const vector3_t pos_j(pos_x[j], pos_y[j], pos_z[j]);
const vector3_t dist(pos_j− pos_i);

force.add(mass[j] / dist.norm_cubed(), dist);
}

}

vel_x[i] += dt ∗ force.x;
vel_y[i] += dt ∗ force.y;
vel_z[i] += dt ∗ force.z;

}

#pragma omp for
#pragma ivdep
for (size_t i = 0; i < n_particles; ++i) {
pos_x[i] += dt ∗ vel_x[i];
pos_y[i] += dt ∗ vel_y[i];
pos_z[i] += dt ∗ vel_z[i];

}
}

Kriemann, »Introduction to Parallel Programming« 58

Example: N-Body Problem
Parallelising Loops

The parallel speedup of this approach is

SSE2 AVX MIC
(Xeon X5650) (Xeon E5-2640) (XeonPhi 5110P)
(24 threads) (24 threads) (240 threads)

Vectorisation: 1.97x 2.05x 6.84x
OpenMP: 11.86x 11.11x 102.55x

Remark
All systems use hyperthreading, i.e. support usage of currently unused processor units
(load, store, arithmetic) by other threads.

Instead of static scheduling, dynamic or guided scheduling can be used. The
resulting speedup is:

SSE2 AVX MIC
(Xeon X5650) (Xeon E5-2640) (XeonPhi 5110P)

dynamic vs. static: 1.01x 1.00x 1.16x
guided vs. static: 1.01x 1.00x 1.11x

Kriemann, »Introduction to Parallel Programming« 59

Example: N-Body Problem
Parallelising Loops

Replacing the force variable by an elementary type, the inner loop permits
OpenMP reduction:
for (size_t i = 0; i < n_particles; ++i) {

const vector3_t pos_i(pos_x[i], pos_y[i], pos_z[i]);
double force_x = 0.0;
double force_y = 0.0;
double force_z = 0.0;

#pragma omp parallel for reduction(+: force_x, force_y, force_z)
#pragma vector always
for (size_t j = 0; j < n_particles; ++j) {
if (i != j) {
const vector3_t pos_j(pos_x[j], pos_y[j], pos_z[j]);
const vector3_t dist(pos_j− pos_i);
double d = mass[j] / dist.norm_cubed();

force_x += d * dist.x; force_y += d * dist.y; force_z += d * dist.z;
}

}

vel_x[i] += dt ∗ force_x;
vel_y[i] += dt ∗ force_y;
vel_z[i] += dt ∗ force_z;

}

But this leads to no further speedup.

Kriemann, »Introduction to Parallel Programming« 60

Example: N-Body Problem
Parallelising Loops

The total speedup gained compared to the initial version or the program is:

SSE2 AVX MIC
(Xeon X5650) (Xeon E5-2640) (XeonPhi 5110P)

23.6x 22.7x 815x

The corresponding absolute runtimes are

SSE2 AVX MIC
(Xeon X5650) (Xeon E5-2640) (XeonPhi 5110P)

original program 50.67s 36.69s 315.70s
final program 2.15s 1.61s 0.39s

Remark
All speedup numbers are w.r.t. to the exact timings, not rounded.

Kriemann, »Introduction to Parallel Programming« 61

Sections

Kriemann, »Introduction to Parallel Programming« 62

Sections
If the computation consists of independent but non-iterative parts, the
sections directive can be used to distributed the work to several threads:

#pragma omp sections [clause1 [[,] clause2, ...]]
{
#pragma omp section // first section region
{

...
}
#pragma omp section // second section region
{

...
}
... // more sections

}

Each section block inside the construct of the sections directive will be
executed once by one team thread.

By default, all team threads will synchronise at the end of the sections block.

Kriemann, »Introduction to Parallel Programming« 63

Sections
Remark
The sections directive must be placed inside a parallel region, otherwise it is
executed sequentially.

The construct of a sections directive may contain only section blocks, e.g.
the following will lead to an error:
#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }

f(); // error
}

The optional clauses of the sections directive include:
private: create unintialised thread-private variables,

firstprivate: create copy-initialised thread-private variables,
lastprivate:
reduction: combine thread-private copies at end of sections construct,

nowait: remove implicit barrier at end of sections construct.

For all clauses, the standard restrictions apply.

Kriemann, »Introduction to Parallel Programming« 64

Sections
Remark
The sections directive must be placed inside a parallel region, otherwise it is
executed sequentially.

The construct of a sections directive may contain only section blocks, e.g.
the following will lead to an error:
#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }

f(); // error
}

The optional clauses of the sections directive include:
private: create unintialised thread-private variables,

firstprivate: create copy-initialised thread-private variables,
lastprivate:
reduction: combine thread-private copies at end of sections construct,

nowait: remove implicit barrier at end of sections construct.

For all clauses, the standard restrictions apply.

Kriemann, »Introduction to Parallel Programming« 64

Sections
Remark
The sections directive must be placed inside a parallel region, otherwise it is
executed sequentially.

The construct of a sections directive may contain only section blocks, e.g.
the following will lead to an error:
#pragma omp sections
{

#pragma omp section
{ ... }
#pragma omp section
{ ... }

f(); // error
}

The optional clauses of the sections directive include:
private: create unintialised thread-private variables,

firstprivate: create copy-initialised thread-private variables,
lastprivate:
reduction: combine thread-private copies at end of sections construct,

nowait: remove implicit barrier at end of sections construct.

For all clauses, the standard restrictions apply.
Kriemann, »Introduction to Parallel Programming« 64

Combined Parallel Sections
Sections

The sections directive can also be combined with the parallel directive:

#pragma omp parallel sections

to replaces the separate statements:
#pragma omp parallel
#pragma omp sections

All clauses of both the parallel and the sections directive, except nowait,
may be used as classes for the combined directive.

Kriemann, »Introduction to Parallel Programming« 65

Single Execution

Kriemann, »Introduction to Parallel Programming« 66

Single Execution
With the single directive

#pragma omp single

the corresponding block is executed by only one thread of the current team.

All other threads will wait at the end of the single block until the executing
thread finishes.

In the example:
#pragma omp parallel
{

f(); // executed by all threads

#pragma omp single
{
std::cout << "finished f()" << std::endl;

}

g(); // executed by all threads _after_ single block
}

f() will be executed in parallel, followed by a single thread printing the message.
Only then will g() be executed again in parallel.

Kriemann, »Introduction to Parallel Programming« 67

Single Execution
Directly inside for or sections blocks, the single construct is not allowed, e.g.
#pragma omp parallel for
for (size_t i = 0; i < n; ++i)
{

...

#pragma omp single // error
{ ... }

}

Instead, the single block may be in the region of a for or sections directive
but associated to a new thread team:
#pragma omp parallel sections
{

#pragma omp section
{
#pragma omp parallel // new thread team
{
...
#pragma omp single // no error
{ ... }

}
}
#pragma omp section
{
#pragma omp parallel // new thread team
{
...
#pragma omp single // no error
{ ... }

}
}

}

Kriemann, »Introduction to Parallel Programming« 68

Single Execution
The optional clauses of the single directive include:

nowait: remove implicit barrier at end of single construct
#pragma omp parallel
{
#pragma omp single nowait
{
...

}

g(); // may be executed _before_ single block in other threads
}

private: create unintialised thread-private variables,
firstprivate: create copy-initialised thread-private variables,

For all clauses, the standard restrictions apply.

Kriemann, »Introduction to Parallel Programming« 69

Copyprivate Clause
Single Execution

A special clause is available for the single directive:

#pragma omp single copyprivate(var1,var2,...)

The value of any variable in the list of the copyprivate clause will be copied to
all other threads at the end of the single clause:
#pragma omp parallel
{

double x = 2;

#pragma omp single copyprivate(x)
{
x = 1;

} // copy value of x to all other threads

// x == 1 in all threads
}

All variables in the copyprivate clause have to be private in the surrounding
parallel region.

Remark
The copy operation is performed using standard copy assignment for elemental types,
entry-wise copy for arrays or using the copy operator for classes.

Kriemann, »Introduction to Parallel Programming« 70

Copyprivate Clause
Single Execution

A similar effect has a shared variable. But this may lead to a race condition
before the single block since the barrier is only at it’s end:
double x = 2;

#pragma omp parallel
{

...
f(x); // x == 1 or x == 2
...
#pragma omp single
{
x = 1;

}
// x == 1 in all threads

}

Furthermore, using nowait together with single, the race condition may also
appear after the single block:
double x = 2;

#pragma omp parallel
{

#pragma omp single nowait
{
x = 1;

}
// x == 1 or x == 2

}

Kriemann, »Introduction to Parallel Programming« 71

Copyprivate Clause
Single Execution

The copyprivate clause provides a safe alternative since the update of all
copies takes place at the barrier:
double x = 2;

#pragma omp parallel firstprivate(x)
{

f(x); // x == 2

#pragma omp single copyprivate(x)
{
x = 1;

} // update of thread−local copy when thread reaches barrier
// x == 1 in all threads

}

Furthermore, the barrier at the end of the construct can not be removed:
#pragma omp parallel
{

double x = 2;

#pragma omp single copyprivate(x) nowait // "nowait" without effect
{
x = 1;

}
// x == 1 in all threads

}

Kriemann, »Introduction to Parallel Programming« 72

Copyprivate Clause
Single Execution

The copyprivate clause provides a safe alternative since the update of all
copies takes place at the barrier:
double x = 2;

#pragma omp parallel firstprivate(x)
{

f(x); // x == 2

#pragma omp single copyprivate(x)
{
x = 1;

} // update of thread−local copy when thread reaches barrier
// x == 1 in all threads

}

Furthermore, the barrier at the end of the construct can not be removed:
#pragma omp parallel
{

double x = 2;

#pragma omp single copyprivate(x) nowait // "nowait" without effect
{
x = 1;

}
// x == 1 in all threads

}

Kriemann, »Introduction to Parallel Programming« 72

Copyprivate Clause
Single Execution

Since the single directive has an implicit barrier, all team threads must
encounter the directive during their execution or none at all:
#pragma omp parallel
{

if (do_loop()) { // conditional execution
#pragma omp single
for (...) {
...

}
}

}

Removing the barrier by the nowait clause will usually work, but the resulting
program is non-conforming.

Kriemann, »Introduction to Parallel Programming« 73

Master Directive
Single Execution

A single block may be executed by any thread of the team.

Using the master directive:

#pragma omp master

the corresponding construct will be executed only by the master thread of the
team, i.e. the thread with thread id 0.
#pragma omp parallel
{

... // executed by all threads

#pragma omp master
{
... // executed _only_ by master thread

}

... // executed by all threads
}

In contrast to the single directive, no implicit barrier exists at the end of the
master block. Also no clauses are available for the master directive.

Kriemann, »Introduction to Parallel Programming« 74

Thread Synchronisation

Kriemann, »Introduction to Parallel Programming« 75

Thread Synchronisation
Beside thread creation and scheduling, thread synchronisation is equally
important due to the shared address space and the potential for race conditions.

OpenMP provides a wide variety of synchronisation methods, namely

• Mutexes, directive and type/function based,
• Barriers,
• Atomic Operations and
• Memory Flushes

Another form of synchronisation for loops is the ordered clause, which enables
loop serialisation (see above).

Kriemann, »Introduction to Parallel Programming« 76

Critical
Thread Synchronisation

A critical section in a program can be guarded using the critical directive:

#pragma omp critical [(name)]

In contrast to other OpenMP directives, the critical directive applies to all
running threads and not just to the threads in the current team:

int main () {
#pragma omp parallel sections
{
#pragma omp section
{
#pragma omp parallel for // team 1
for (int i = 0; i < n; ++i)
f(i);

}
#pragma omp section
{
#pragma omp parallel for // team 2
for (int j = 0; j < m; ++j)
f(j);

}
}

}

void f (int i) {
...
#pragma omp critical
{
... // one thread from team 1 _or_ team 2

}
...

}

Even though f is called from different thread teams, the critical section may only
be entered by a single thread at a time.

Kriemann, »Introduction to Parallel Programming« 77

Critical
Thread Synchronisation

Without a name, all critical sections are considered to have the same name, i.e.
all anonymous critical sections form a single critical section:

int main () {
#pragma omp parallel sections
{
#pragma omp section
{
#pragma omp parallel for // team 1
for (int i = 0; i < n; ++i)
f(i);

}
#pragma omp section
{
#pragma omp parallel for // team 2
for (int j = 0; j < m; ++j)
g(j);

}
}

}

void f (int i) {
...
#pragma omp critical
{
... // one thread from team 1 _or_ team 2

}
...

}

void g (int i) {
...
#pragma omp critical
{
... // one thread from team 1 _or_ team 2

}
...

}

With the optional name, this program global mutual exclusion can be limited to
critical sections with an equal name:

void f (int i) {
...
#pragma omp critical (f)
{
... // one thread from team 1

}
...

}

void g (int i) {
...
#pragma omp critical (g)
{
... // one thread from team 2

}
...

}

Kriemann, »Introduction to Parallel Programming« 78

Critical
Thread Synchronisation

Without a name, all critical sections are considered to have the same name, i.e.
all anonymous critical sections form a single critical section:

int main () {
#pragma omp parallel sections
{
#pragma omp section
{
#pragma omp parallel for // team 1
for (int i = 0; i < n; ++i)
f(i);

}
#pragma omp section
{
#pragma omp parallel for // team 2
for (int j = 0; j < m; ++j)
g(j);

}
}

}

void f (int i) {
...
#pragma omp critical
{
... // one thread from team 1 _or_ team 2

}
...

}

void g (int i) {
...
#pragma omp critical
{
... // one thread from team 1 _or_ team 2

}
...

}

With the optional name, this program global mutual exclusion can be limited to
critical sections with an equal name:

void f (int i) {
...
#pragma omp critical (f)
{
... // one thread from team 1

}
...

}

void g (int i) {
...
#pragma omp critical (g)
{
... // one thread from team 2

}
...

}

Kriemann, »Introduction to Parallel Programming« 78

Critical
Thread Synchronisation

Example: Pipeline
In the pipeline algorithm model, several computations are successively applied to
some input data, e.g. for v ∈ Rn the value f3(f2(f1(f0(vi)))), i ≤ n, is sought.
This can be done in OpenMP with several queues and parallel blocks,
synchronised with critical sections:

bool end = false;
std::queue< double > in0, in1, in2, in3;

#pragma omp parallel sections
{

#pragma omp section // f0
{ ... }

#pragma omp section // f1
{ ... }

#pragma omp section // f2
{ ... }

#pragma omp section // f3
{ ... }

}

#pragma omp section // f1
{
do {
double v;

#pragma omp critical (in1)
{
if (in1.empty()) “continue”;
v = in1.front(); in1.pop();

}

v = f1(v);

#pragma omp critical (in2)
in2.push(v);

} while (! end);
}

Kriemann, »Introduction to Parallel Programming« 79

Critical
Thread Synchronisation

Remark
Recursive function calls within critical sections may lead to deadlocks:

void f (int i) {
...
#pragma omp critical // deadlock at second call
{
...
f(); // recursion
...

}
...

}

Example: Dot Product
The previous dot product compution can also be implemented using critical:
double dot (const std::vector< double > & x, const std::vector< double > & y) {

double sum = 0.0;
#pragma omp parallel
{
double s = 0.0;

#pragma omp for
for (size_t i = 0; i < x.size(); ++i)
s += x[i] ∗ y[i];

#pragma omp critical
sum += s;

}
return sum;

}

Kriemann, »Introduction to Parallel Programming« 80

Critical
Thread Synchronisation

Remark
Recursive function calls within critical sections may lead to deadlocks:

void f (int i) {
...
#pragma omp critical // deadlock at second call
{
...
f(); // recursion
...

}
...

}

Example: Dot Product
The previous dot product compution can also be implemented using critical:
double dot (const std::vector< double > & x, const std::vector< double > & y) {

double sum = 0.0;
#pragma omp parallel
{
double s = 0.0;

#pragma omp for
for (size_t i = 0; i < x.size(); ++i)
s += x[i] ∗ y[i];

#pragma omp critical
sum += s;

}
return sum;

}

Kriemann, »Introduction to Parallel Programming« 80

Mutexes
Thread Synchronisation

Using the critical directive will often lead to unneccessary thread blocking,
since it is bound to functions and not to data.

In the following example, the access to the output stream is critical, not the
function call:
void log (std::ostream & os, const char ∗ text) {

#pragma omp critical
os << text;

}

As an alternative, OpenMP provides mutex types and corresponding functions.
The data type for an OpenMP mutex is:

omp_lock_t

Functions for locking and unlocking mutexes are:

void omp_set_lock (omp_lock_t ∗ mutex); // lock mutex
void omp_unset_lock (omp_lock_t ∗ mutex); // unlock mutex

Both are imported via the OpenMP header file omp.h.

Kriemann, »Introduction to Parallel Programming« 81

Mutexes
Thread Synchronisation

Before using an OpenMP mutex, it has to be initialised with:

void omp_init_lock (omp_lock_t ∗ mutex);

After initialisation, the mutex is unlocked.

Remark
No other OpenMP lock function must be called with an uninitialised mutex!

Finally, if the mutex is no longer used, it should be destroyed using

void omp_destroy_lock (omp_lock_t ∗ mutex);

Before calling omp_destroy_lock, the mutex has to be unlocked .

Furthermore, a test function is provided, which either locks an unlocked mutex
or immediately returns:

int omp_test_lock (omp_lock_t ∗ mutex);

If the mutex could successfully be locked, the function returns a non-zero value,
i.e. true. Otherwise, 0 is returned, i.e. false.

Kriemann, »Introduction to Parallel Programming« 82

Mutexes
Thread Synchronisation

Using OpenMP mutexes, the above function can be implemented without a
function based lock. Instead, a data centered lock is used:
#include <omp.h>

void log (std::ostream & os, const char ∗ text, omp_lock_t * mutex) {
omp_set_lock(mutex);
os << text;
omp_unset_lock(mutex);

}

void f (int i) {
omp_lock_t mutex_f;
std::ofstream out_f("f.txt");

omp_init_lock(& mutex_f);

#pragma omp parallel
{
...

log(out_f, "message f()", & mutex_f);

...
}

omp_destroy_lock(& mutex_f);
}

void g (int i) {
omp_lock_t mutex_g;
std::ofstream out_g("g.txt");

omp_init_lock(& mutex_g);

#pragma omp parallel
{
...

log(out_g, "message g()", & mutex_g);

...
}

omp_destroy_lock(& mutex_g);
}

Now, both parallel teams can write to their corresponding output stream
simultaneously but still only one thread per team may write at a time.

Kriemann, »Introduction to Parallel Programming« 83

Mutexes
Thread Synchronisation

Example: Dot Product
The previous dot product compution implemented using omp_lock_t:
double dot (const std::vector< double > & x, const std::vector< double > & y) {

double sum = 0.0;
omp_lock_t mutex;

omp_init_lock(& mutex);

#pragma omp parallel
{
double s = 0.0;

#pragma omp for
for (size_t i = 0; i < x.size(); ++i)
s += x[i] ∗ y[i];

omp_set_lock(& mutex);
sum += s;
omp_unset_lock(& mutex);

}

omp_destroy_lock(& mutex);

return sum;
}

Kriemann, »Introduction to Parallel Programming« 84

Nested Mutexes
Mutexes

Locking a locked OpenMP mutex blocks the thread trying to aquire the lock.
This may easily lead to deadlocks:
void f (omp_lock_t ∗ mutex) {

omp_set_lock(mutex);
...
f(); // deadlock in recursive call
...
omp_unset_lock(mutex);

}

For such cases, OpenMP provides nested mutexes, which can be locked multiple
times by the same thread. Each time a nested mutex is locked, an internal
counter is incremented. When unlocking a nested mutex this counter is
decremented and the mutex is unlocked for other threads only when the counter
is zero.

The data type for a nested lock in OpenMP is omp_nest_lock_t and the
corresponding functions are

void omp_set_nest_lock (omp_nest_lock_t ∗ mutex);
void omp_unset_nest_lock (omp_nest_lock_t ∗ mutex);
void omp_init_nest_lock (omp_nest_lock_t ∗ mutex);
void omp_destroy_nest_lock (omp_nest_lock_t ∗ mutex);
int omp_test_nest_lock (omp_nest_lock_t ∗ mutex);

Kriemann, »Introduction to Parallel Programming« 85

Nested Mutexes
Mutexes

Remark
The function omp_test_nest_lock will return the new value of the internal counter of
the lock was successfully aquired and 0 otherwise.

Using a nested lock, a recursion may proceed in the same thread, which has
locked the mutex:
void f (omp_nest_lock_t ∗ mutex) {

omp_set_nest_lock(mutex);
...
f(); // NO deadlock in recursive call
...
omp_unset_nest_lock(mutex);

}

Kriemann, »Introduction to Parallel Programming« 86

Mutex Overhead
Mutexes

Locking, unlocking or testing OpenMP mutexes involve read/write operations
with respect to the the main memory, which induces some overhead.
Furthermore, the different mutex types will perform different operations, and
hence, may have different overhead.

The following table contains timings for some typical mutex operations on an
Intel Xeon E5-2640:

Operation (20000000x) Intel Compiler GNU Compiler

omp_lock_t
locking/unlocking 0.687s 0.313s
testing locked mutex 0.446s 0.202s

omp_nest_lock_t
locking/unlocking 0.747s 0.466s
n×locking/n×unlocking 0.433s 0.174s
testing locked mutex 0.402s 0.063s

Kriemann, »Introduction to Parallel Programming« 87

Mutexes and C++
Mutexes

Locked mutexes may pose a problem if a runtime error is detected in the
program:
double sum_one_over_x (std::vector< double > & x, // shared

omp_lock_t & mutex_x) { // guards access to x
double sum = 0;

omp_set_lock(& mutex); // mutex locked
for (auto f : x) {
if (f == 0.0)
throw "division by zero"; // mutex _not_ unlocked

sum += 1.0 / f;
}
omp_unset_lock(& mutex); // mutex unlocked

return sum;
}

Before throwing the exception, the mutex has to be unlocked. Otherwise, the
program may deadlock later.

This extra error handling is easily forgotten and hence, is a frequent source of
errors.

Kriemann, »Introduction to Parallel Programming« 88

Mutexes and C++
Mutexes

Fortunately, with C++, this can easily be remedied by wrapping mutexes in
scoped lockes, which automatically locks associated mutexes during construction
and unlocks them during destruction:
struct scoped_lock_t {

omp_lock_t ∗ mutex; // associated mutex

scoped_lock_t (omp_lock_t & m) : mutex(&m) {
omp_set_lock(mutex); // mutex locked in ctor

}
~scoped_lock_t () {
omp_unset_lock(mutex); // mutex unlocked in dtor

}

Using scoped_lock_t, the previous example can be safely rewritten as:
double sum_one_over_x (std::vector< double > & x, // shared

omp_lock_t & mutex) { // guards access to x
double sum = 0;
scoped_lock_t lock(mutex);

for (auto f : x) {
if (f == 0.0)
throw "division by zero";

sum += 1.0 / f;
}
return sum;

}

Now, when leaving the local scope, i.e. the function, the destructor of the
variable lock is automatically invoked, thereby unlocking the mutex.

Kriemann, »Introduction to Parallel Programming« 89

Barrier
Thread Synchronisation

Most OpenMP directives will have an implicit barrier at the end of their
construct, which enforces a synchronisation between all threads of the current
team.

With the barrier directive, an explicit barrier can be defined in the program:

#pragma omp barrier

The barrier directive has no associated construct.

All threads of the current team have to finish execution of all tasks before the
barrier directive, e.g. all threads will wait until all other threads have reached
the barrier:
#pragma omp parallel
{

... // executed _before_ barrier by _all_ threads

#pragma omp barrier // wait for _all_ other threads

... // executed _after_ barrier by _all_ threads
}

Kriemann, »Introduction to Parallel Programming« 90

Barrier
Thread Synchronisation

Since the barrier affects all team threads, each thread must encounter the
directive during execution or none at all:
#pragma omp parallel
{

...
if (omp_get_thread_num() != 0) { // not by master
#pragma omp barrier // error

}
...

}

Otherwise, depending on the implementation of the barrier directive, the
program may block.

Furthermore, the sequence in which for, sections or single directives and the
barrier directive are encountered during program execution must be equal for
all threads of the team:
#pragma omp parallel
{

if (omp_get_thread_num() == 0) { // master:
#pragma omp for // first loop
...
#pragma omp barrier // then barrier

} else { // rest:
#pragma omp barrier // first barrier
#pragma omp for // then loop
...

}
}

Kriemann, »Introduction to Parallel Programming« 91

Barrier
Thread Synchronisation

There are also syntactical restrictions to the barrier directive.

If a if, while, do or switch is used, the barrier directive must be enclosed by
a structured block, i.e. no standalone statement:
#pragma omp parallel
{

if (...)
#pragma omp barrier // error

if (...) {
#pragma omp barrier // no error
}

}

Kriemann, »Introduction to Parallel Programming« 92

Atomic
Thread Synchronisation

Atomic operations are supported in OpenMP in the form of the atomic directive:
#pragma omp atomic [read | write | update | capture]

The atomic directive applies to the immediately following statement. Depending
on the atomic operation, this statement is restricted to one of the following
forms:

read: y = x;

write: x = expression;

update: x++; x--; ++x; --x;
x op= expression;
x = x op expression;

capture: y = x++; y = x--; y = ++x; y = --x;
y = x op= expression;

Here, x and y are both scalar types, e.g. char, int or double, and expression is
a scalar expression. Furthermore, op is a standard arithmetic or bit operator, e.g.
+, -, *, /, ˆ, &, |, << or >>.

Remark
The arithmetic and bit operators must not be overloaded.

Kriemann, »Introduction to Parallel Programming« 93

Atomic
Thread Synchronisation

For the capture operation, also a structured block is permitted if it has one of
the following forms:
{ v = x; x op= expression; } { v = x; x = x op expression; }
{ x op= expression; v = x; } { x = x op expression; v = x; }

{ v = x; x++; } { v = x; ++x; } { v = x; x--; } { v = x; --x; }
{ x++; v = x; } { ++x; v = x; } { x--; v = x; } { --x; v = x; }

Examples for atomic operations are:
double pi = 355.0/113.0, x, y;

#pragma omp atomic read // atomically read "pi"
x = pi;

#pragma omp atomic write // atomically write "y"
y = 2.0 ∗ pi;

#pragma omp atomic update // atomically update "y"
y = y+1;

#pragma omp atomic capture // atomically update "x" and write y
y = x++;

#pragma omp atomic capture
{ y = x; x--; }

Remark
The Intel Compiler does not support expressions of the form “x = x op expression”,
only “x op= expression”.

Kriemann, »Introduction to Parallel Programming« 94

Atomic
Thread Synchronisation

Atomic operations are performed with respect to memory addresses. All atomic
operations affecting the same memory address will enforce a mutually exclusive
access for all threads in the program.
double x = 0;

int main () {
#pragma omp parallel sections
{
#pragma omp section
{
#pragma omp parallel // team 1
f();

}
#pragma omp section
{
#pragma omp parallel // team 2
g(2.0);

}
}

}

void f () {
#pragma omp atomic update
x += 1;

}

void g (double y) {
#pragma omp atomic write
x = y;

}

Since x is referenced in both atomic operations, both teams will be affected and
the write and update operation will be performed only in one thread of the
whole program at a time.

Kriemann, »Introduction to Parallel Programming« 95

Atomic
Thread Synchronisation

When working with arrays, each array element has a different memory address
and hence, will induce a different atomic operation:
#pragma omp parallel for
for (size_t i = 0; i < n; ++i)
{

#pragma omp atomic write
x[index[i]] = f(i);

}

Here, write operations to different index positions form different atomic
operations and may therefore be executed in parallel.

In such cases, atomic is a better alternative to critical:
#pragma omp parallel for
for (size_t i = 0; i < n; ++i)
{

#pragma omp critical
x[index[i]] = f(i);

}

which would enforce sequential execution.

Kriemann, »Introduction to Parallel Programming« 96

Atomic
Thread Synchronisation

Example: Dot Product
Implementing the dot product using atomic:
double dot (const std::vector< double > & x, const std::vector< double > & y) {

double sum = 0.0;

#pragma omp parallel
{
double s = 0.0;

#pragma omp for
for (size_t i = 0; i < x.size(); ++i)
s += x[i] ∗ y[i];

#pragma atomic update
sum += s;

}

return sum;
}

Kriemann, »Introduction to Parallel Programming« 97

Limits to Atomic
Atomic

During an atomic update of a variable x, only reading and writing the
corresponding memory position will be atomic, not the evaluation of the
expression.

Due to this, the expression must not contain references to x, e.g.
#pragma omp atomic update
x += y∗x+3; // race condition

Similarly, for an atomic capture, e.g.
#pragma omp atomic capture
y = x++;

or
#pragma omp atomic capture
{ ++x; y = x; }

only reading and writing corresponding to x is performed atomic. Not the
evaluation of an expression or writing y.

As for update, any expression in the capture statement must not contain a
reference to the captured variable.
#pragma omp atomic capture
{ x += 2∗x+y; y = x; } // race condition

Kriemann, »Introduction to Parallel Programming« 98

Flush
Thread Synchronisation

OpenMP uses a memory model with relaxed consistency between several threads,
i.e. changing a shared variable in one thread will not immediately change
corresponding copies in other threads.

In the following example, the master thread changes the shared variable x, which
is read in another thread:
double x = 0;

#pragma omp parallel shared(x) num_threads(2)
{

#pragma omp barrier

if (omp_get_thread_num() == 0) {
x = 1; // written in first thread

} else {
std::cout << x << std::endl; // consumed in second thread

}
}

With an instant update of x at the second thread, it should always print out the
value 1. Instead, during actual progam runs, also the initial value 0 is printed
due to a delayed update of x at the second thread.

Remark
The barrier is used to reduce effects of task/thread scheduling.

Kriemann, »Introduction to Parallel Programming« 99

Flush
Thread Synchronisation

Memory consistency with respect to shared variables can be enforced using the
flush directive:

#pragma omp flush [(var1,var2,...)]

When writing to a variable, a following flush ensures, that the new value is
written to memory:
x = y;
#pragma omp flush (x) // afterwards memory contains same value as x

Similarly, when reading a variable a proceeding flush ensures that the variable
holds the same value as the corresponding memory position:
#pragma omp flush (x)
y = x; // x has same value as in memory

Without a variable list all currently visible variables are affected by flush.

Using flush in the above example, the expected value is always printed:
if (omp_get_thread_num() == 0) {
x = 1;
#pragma omp flush (x)

} else {
#pragma omp flush (x)
std::cout << x << std::endl;

}

Kriemann, »Introduction to Parallel Programming« 100

Flush
Thread Synchronisation

Memory consistency with respect to shared variables can be enforced using the
flush directive:

#pragma omp flush [(var1,var2,...)]

When writing to a variable, a following flush ensures, that the new value is
written to memory:
x = y;
#pragma omp flush (x) // afterwards memory contains same value as x

Similarly, when reading a variable a proceeding flush ensures that the variable
holds the same value as the corresponding memory position:
#pragma omp flush (x)
y = x; // x has same value as in memory

Without a variable list all currently visible variables are affected by flush.

Using flush in the above example, the expected value is always printed:
if (omp_get_thread_num() == 0) {
x = 1;
#pragma omp flush (x)

} else {
#pragma omp flush (x)
std::cout << x << std::endl;

}

Kriemann, »Introduction to Parallel Programming« 100

Flush
Thread Synchronisation

In contrast to atomic operations, the flush operation only affects the thread
encountering the flush directive and not other threads.

Hence, using flush to read a value from memory will not guarantee it to have
the most recent value if another thread has not also used flush to write the
local changes to the main memory:

if (omp_get_thread_num() == 0) {
x = 1;
// no "write" flush

} else {
#pragma omp flush (x)
std::cout << x << std::endl;

}

Similarly, if a thread has issued a flush after changing a variable, but other
threads did not enforce reading the value from memory, their data is still
inconsistent:

if (omp_get_thread_num() == 0) {
x = 1;
#pragma omp flush (x)

} else {
// no "read" flush
std::cout << x << std::endl;

}

Kriemann, »Introduction to Parallel Programming« 101

Flush
Thread Synchronisation

Several other OpenMP directives perform an implicit flush operation with
respect to all shared variables:

• during barrier,
• at entry and exit from parallel, critical, and ordered,
• at exit from for and sections, unless nowait was specified,
• during locking/unlocking omp_lock_t mutexes.

Furthermore, the atomic directive performs a flush corresponding to the
referenced variable.

In all other cases:

Flush before reading and after writing a shared variable!

Remark
Before OpenMP v2.5 locks did not perform a flush operation, hence, an explicit flush
was necessary to obtain the most recent value of shared variables.

Kriemann, »Introduction to Parallel Programming« 102

Flush
Thread Synchronisation

Several other OpenMP directives perform an implicit flush operation with
respect to all shared variables:

• during barrier,
• at entry and exit from parallel, critical, and ordered,
• at exit from for and sections, unless nowait was specified,
• during locking/unlocking omp_lock_t mutexes.

Furthermore, the atomic directive performs a flush corresponding to the
referenced variable.

In all other cases:

Flush before reading and after writing a shared variable!

Remark
Before OpenMP v2.5 locks did not perform a flush operation, hence, an explicit flush
was necessary to obtain the most recent value of shared variables.

Kriemann, »Introduction to Parallel Programming« 102

Flush
Thread Synchronisation

atomic vs. flush
Since atomic operations will always guarantee a consistent memory, they should
be preferred over flush since they are usually faster :
if (omp_get_thread_num() == 0) {

x = 1;
#pragma omp flush (x)

} else {
#pragma omp flush (x)
std::cout << x << std::endl;

}

if (omp_get_thread_num() == 0) {
#pragma omp atomic write
x = 1;

} else {
double y;
#pragma omp atomic read
y = x;
std::cout << y << std::endl;

}

volatile
Variables declared volatile have an implicit flush before read and after write:

volatile double x = 0;

#pragma omp parallel shared(x) num_threads(2)
{
#pragma omp barrier
if (omp_get_thread_num() == 0) {
x = 1; // implicit flush after

} else {
std::cout << x << std::endl; // implicit flush before

}
}

However, this solution usually leads to a worse performance since the compiler
can not optimise volatile variables as much as non-volatile variables.

Kriemann, »Introduction to Parallel Programming« 103

Flush
Thread Synchronisation

atomic vs. flush
Since atomic operations will always guarantee a consistent memory, they should
be preferred over flush since they are usually faster :
if (omp_get_thread_num() == 0) {

x = 1;
#pragma omp flush (x)

} else {
#pragma omp flush (x)
std::cout << x << std::endl;

}

if (omp_get_thread_num() == 0) {
#pragma omp atomic write
x = 1;

} else {
double y;
#pragma omp atomic read
y = x;
std::cout << y << std::endl;

}

volatile
Variables declared volatile have an implicit flush before read and after write:

volatile double x = 0;

#pragma omp parallel shared(x) num_threads(2)
{
#pragma omp barrier
if (omp_get_thread_num() == 0) {
x = 1; // implicit flush after

} else {
std::cout << x << std::endl; // implicit flush before

}
}

However, this solution usually leads to a worse performance since the compiler
can not optimise volatile variables as much as non-volatile variables.

Kriemann, »Introduction to Parallel Programming« 103

Comparison
Thread Synchronisation

For the dot product, four equivalent implementations were presented using the
reduction clause, with the critical directive, the omp_lock_t locks and the
atomic directive.

The following diagram shows the runtime of these implementations for different
vector sizes on a 2-CPU Intel Xeon E5-2640:

128 256 512 1024 2048 4096 8192 16384 32768 65536
Vector Size

2

4

6

8

10

R
un

tim
e

in
µ
s

reduction

critical

atomic

omp lock t

Kriemann, »Introduction to Parallel Programming« 104

Task based Computations

Kriemann, »Introduction to Parallel Programming« 105

Task based Computations
Up to now, tasks where implicitly defined by the for directive, e.g. with
#pragma omp for
for (size_t i = 0; i < n; ++i)

x[i] = f(i);

p tasks are automatically defined by OpenMP, each of the form
for (size_t i = n_lb; i < n_ub; ++i)

x[i] = f(i);

Using one of the directives sections, single or master, tasks could also be
defined explicitly , e.g.
#pragma omp sections
{

#pragma omp section // task 1
{ ... }
#pragma omp section // task 2
{ ... }
#pragma omp section // task 3
{ ... }

}

or
#pragma omp parallel
{

f(); // part of all tasks

#pragma omp single // only part of _one_ task
{ ... }

}

Kriemann, »Introduction to Parallel Programming« 106

Task based Computations
However, such constructs may easily induce additional overhead due to many
parallel constructs, e.g.:
void traverse_tree (node_t ∗ p) {

#pragma omp parallel sections // new parallel block for each node
{
#pragma omp section
{
traverse_tree(p−>left);

}
#pragma omp section
{
traverse_tree(p−>right);

}
}
compute(p);

}

Furthermore, there is a direct relationship between tasks and threads, which may
lead to poor load balancing, e.g. if traversing an unbalanced tree with the above
function:

Task mapping in traverse_tree on 4 processors
Kriemann, »Introduction to Parallel Programming« 107

Task based Computations
Since v3.0, OpenMP also supports explicit task creation without thread binding:

#pragma omp task [clause1 [[,] clause2, ...]]

Each task consists of code to execute and a data environment. The code is
defined by the immediately following block:
#pragma omp task
{

... // code executed in task
}

All code reachable by code in the construct defines the task region.

An important difference between a task and a section is the time at which it
may be scheduled for execution.

section: task is executed when associated thread will encounter the directive,
task: task may be executed after thread encounters directive.

Tasks will only be executed by threads of the current team, e.g. to which also
the thread encountering the task directive belongs. Furthermore, the
encountering thread is not neccessarily the executing thread of the task.

Kriemann, »Introduction to Parallel Programming« 108

Task based Computations
All threads, which encounter a task directive, will generate a new task:
#pragma omp parallel
{

for (int i = 0; i < 4; ++i) {
#pragma omp task
{
...

}
}

}

Here, each of the p threads will execute the parallel construct and hence,
generate 4 tasks for a total of 16 tasks.

If tasks should be generated only once for an algorithm, the single or master
directive may be used:
#pragma omp parallel
{

#pragma omp single
for (int i = 0; i < 4; ++i) {
#pragma omp task
{
...

}
}

}

Now, 4 tasks are generated by only one thread of the team. However, all team
threads will execute the generated tasks.

Kriemann, »Introduction to Parallel Programming« 109

Data Environment
Task based Computations

The data environment of a task is the set of all variables which are in the scope
of the task region. The definition of the data environment depends on the data
clauses used before and during the definition of the task.

shared
Shared variables will refer to the memory address available at task construction.
This address must be valid until the task has finished execution:

void f () {
double x = produce_x(); // lifetime restricted to f, not the task

#pragma omp task shared(x)
{ consume_x(x); } // error: x may no longer exist

}

firstprivate
The variable will be defined with the value at task construction. Since task
execution is not immediate, this value has to be stored, i.e. the variable is
allocated and packaged together with the task code.

void f () {
double x = produce_x();

#pragma omp task firstprivate(x)
{ consume_x(x); } // ok: copy of x is packaged with task

}

Kriemann, »Introduction to Parallel Programming« 110

Data Environment
Task based Computations

private
Private variables will be uninitialised and hence, only allocated when the task is
scheduled for execution.

Variables referenced in the task construct with no explicit data sharing rules are
shared, if the variables are shared by all implicit tasks in the enclosing region.
Otherwise, such variables are firstprivate:
void f () {

double x1 = 1.0;
double x2 = 2.0;

#pragma omp parallel firstprivate(x2)
{
double x3 = 3.0; // private to each implicit task due to scope

#pragma omp task
{
double x4 = 4.0; // private due to scope

// x1 : shared (shared by all implicit tasks)
// x2 : firstprivate (due to “firstprivate(x2)”)
// x3 : firstprivate (not shared by all implicit tasks)

}
}

}

Remark
Use the clause “default(none)” to prevent undefined behaviour.

Kriemann, »Introduction to Parallel Programming« 111

Task Synchronisation
Task based Computations

A task encountering a task directive becomes the parent task to the newly
created child task.

Remark
All code in the region of a parallel directive is executed in an implicit task.

Code in the construct of a child task is not part of the task region of the parent
task:
#pragma omp task
{

... // part of parent task

#pragma omp task
{
... // part of child task, not of parent task

}

... // part of parent task
}

After creating the child task, the parent may immediatly proceed with the
execution of it’s task region.

Kriemann, »Introduction to Parallel Programming« 112

Task Synchronisation
Task based Computations

To synchronise with the end of child tasks, OpenMP provides the directive
#pragma omp taskwait

Now, the parent task will block until all child tasks have finished execution:
void fib (size_t n) {

size_t i, j;

#pragma omp task shared(i)
i = fib(n-1);

#pragma omp task shared(j)
j = fib(n-2);

#pragma omp taskwait

return i+j;
}

Placement Restriction
After an if, while, do or switch, the taskwait must be enclosed by a
structured block.
if (...)
#pragma omp taskwait // error

if (...) {
#pragma omp taskwait // no error
}

Kriemann, »Introduction to Parallel Programming« 113

Task Synchronisation
Task based Computations

To synchronise with the end of child tasks, OpenMP provides the directive
#pragma omp taskwait

Now, the parent task will block until all child tasks have finished execution:
void fib (size_t n) {

size_t i, j;

#pragma omp task shared(i)
i = fib(n-1);

#pragma omp task shared(j)
j = fib(n-2);

#pragma omp taskwait

return i+j;
}

Placement Restriction
After an if, while, do or switch, the taskwait must be enclosed by a
structured block.
if (...)
#pragma omp taskwait // error

if (...) {
#pragma omp taskwait // no error
}

Kriemann, »Introduction to Parallel Programming« 113

Task Scheduling
Task based Computations

The execution of a task is usually deferred to some later point.

Remark
A simplified model uses a FIFO work queue to whish tasks are inserted and requested by
idle threads (see “Work Pool Model” or “Online Scheduline”).

Furthermore, the execution of a task may be suspended at task scheduling
points. At such points, the task scheduler may perform a task switch and
proceed with the execution of other tasks.

Task scheduling points are implicitly defined

• immediately after creating an explicit task,
• after the last instruction of a task,
• at a taskwait directive and
• at implicit and explicit barriers.

Task switching will only be performed with respect to the local thread team and
tasks created within.

Kriemann, »Introduction to Parallel Programming« 114

Task Scheduling
Task based Computations

OpenMP also provides the directive taskyield to explicitly define a task
scheduling point:

#pragma omp taskyield

If a taskyield directive is encountered during the execution of a task, this task
may be suspended in favor of another task.

A typical example is a I/O routine, e.g. network communication, which initiates
the I/O operation and then waits for it to be finished. During this time, the task
may yield the executing thread to another task:
#pragma omp task
{

req = start_recv(); // initiate network operation

while (! is_finished(req)) {
#pragma omp taskyield // switch to computing task

}

finish_recv(); // finish network operation
}

Remark
The same syntactical restrictions as for taskwait apply to taskyield.

Kriemann, »Introduction to Parallel Programming« 115

Task Scheduling
Task based Computations

If a task was scheduled to be executed by a thread, this task is tied to this
thread until the task has finished execution, even if it was suspended in between.

Assuming that the thread is also tied to a specific processer, this behaviour
favors cache locality of task private data and, to some degree, limits access to
remote memory.

Example: Matrix Multiplication with Cache Locality
Exploiting processor caches with a blocked matrix mult. (block size N):
Matrix A(n,n), B(n,n), C(n,n);

for (size_t i = 0; i < n/N; ++i) {
for (size_t j = 0; j < n/N; ++j) {
#pragma omp task
{
Matrix TA(N,N), TB(N,N), TC(N,N); // cache copies of A,B and C of size NxN

for (size_t k = 0; k < n/N; ++k) {
load_block(A, TA, i, k); // read block of A into cache copy
load_block(B, TB, k, j); // read block of B into cache copy
multiply_add(TA, TB, TC); // pointwise multiplication

}
store_block(C, TC, i, j); // store cache copy in C

}
}

}

When switching the execution thread for a single task, the local copies for A, B
and C may no longer reside at the local processor cache.

Kriemann, »Introduction to Parallel Programming« 116

Task Scheduling
Task based Computations

On the other hand, other tasks may be tied to the same thread, competing for
execution time, potentially leading to a load imbalance between team threads.

For such situations, the task may be created using the untied clause:

#pragma omp task untied

This allows other threads to continue task execution if it was suspended at a
task scheduling point.

Remark
A consequence of untied tasks is, that the thread id may change during the execution of
a task.

Kriemann, »Introduction to Parallel Programming« 117

Final Clause
Task based Computations

Generating and scheduling tasks induces an overhead, which may be more costly,
than the execution of the task region. In such cases, it is more efficient to
execute the tasks directly by the encountering task.

For this, OpenMP provides the final clause:

#pragma omp task final(expression)

If the expressions of the final clause evaluates to true, the current task is
suspended and the child task is executed immediately by the thread executing
the encountering task.

Furthermore, the final clause applies to all other tasks descending from the
task, i.e. all tasks created in the task region are immediatly executed.

In the following example, the previous task-parallel matrix multiplication will
actually use tasks only if n > N :
Matrix A(n,n), B(n,n), C(n,n);

#pragma omp task final(n>N)
mat_mul(A, B, C); // mat_mul only parallel if n > N

Kriemann, »Introduction to Parallel Programming« 118

Example: LU Factorisation
Task based Computations

For a matrix A ∈ Rn×n a factorisation

A = L · U

is sought with a (unit-diagonal) lower triangular matrix L ∈ Rn×n and an upper
triangular matrix U ∈ Rn×n.

A sequential implementation is given by:
for (size_t i = 0; i < n; ++i) {

// compute column
for (size_t j = i+1; j < n; ++j)
A(j,i) = A(j,i) / A(i,i);

// update trailing matrix
for (size_t j = i+1; j < n; ++j)
for (size_t k = i+1; k < n; ++k)
A(j,k) = A(j,k) - A(j,i) ∗ A(i,k);

}

Remark
For simplicity, the LU factorisation is performed without pivoting, although this might
result in a breakdown or a less acurate factorisation.

Kriemann, »Introduction to Parallel Programming« 119

Example: LU Factorisation
Task based Computations

The outer loop of the LU factorisation can not be parallelised, since the
factorisation enforces sequential execution with respect to the diagonal.

After handling the diagonal element,

1 all coefficients in the current column are solved and
2 all coefficients in the trailing submatrix are updated

Both steps perform independent operations and can be
parallelised:

for (size_t i = 0; i < n; ++i) {
#pragma omp parallel
{
#pragma omp for
for (size_t j = i+1; j < n; ++j)
A(j,i) = A(j,i) / A(i,i);

#pragma omp for collapse(2)
for (size_t j = i+1; j < n; ++j)
for (size_t k = i+1; k < n; ++k)
A(j,k) = A(j,k) - A(j,i) ∗ A(i,k);

} }

The update phase involves O
(
n2) independent operations and hence, may use

many processors simultaneously. However, each sub operation only handles a
single coefficient.

Kriemann, »Introduction to Parallel Programming« 120

Example: LU Factorisation
Task based Computations

The outer loop of the LU factorisation can not be parallelised, since the
factorisation enforces sequential execution with respect to the diagonal.

After handling the diagonal element,
1 all coefficients in the current column are solved and

2 all coefficients in the trailing submatrix are updated
Both steps perform independent operations and can be
parallelised:

for (size_t i = 0; i < n; ++i) {
#pragma omp parallel
{
#pragma omp for
for (size_t j = i+1; j < n; ++j)
A(j,i) = A(j,i) / A(i,i);

#pragma omp for collapse(2)
for (size_t j = i+1; j < n; ++j)
for (size_t k = i+1; k < n; ++k)
A(j,k) = A(j,k) - A(j,i) ∗ A(i,k);

} }

The update phase involves O
(
n2) independent operations and hence, may use

many processors simultaneously. However, each sub operation only handles a
single coefficient.

Kriemann, »Introduction to Parallel Programming« 120

Example: LU Factorisation
Task based Computations

The outer loop of the LU factorisation can not be parallelised, since the
factorisation enforces sequential execution with respect to the diagonal.

After handling the diagonal element,
1 all coefficients in the current column are solved and
2 all coefficients in the trailing submatrix are updated

Both steps perform independent operations and can be
parallelised:

for (size_t i = 0; i < n; ++i) {
#pragma omp parallel
{
#pragma omp for
for (size_t j = i+1; j < n; ++j)
A(j,i) = A(j,i) / A(i,i);

#pragma omp for collapse(2)
for (size_t j = i+1; j < n; ++j)
for (size_t k = i+1; k < n; ++k)
A(j,k) = A(j,k) - A(j,i) ∗ A(i,k);

} }

The update phase involves O
(
n2) independent operations and hence, may use

many processors simultaneously. However, each sub operation only handles a
single coefficient.

Kriemann, »Introduction to Parallel Programming« 120

Example: LU Factorisation
Task based Computations

The outer loop of the LU factorisation can not be parallelised, since the
factorisation enforces sequential execution with respect to the diagonal.

After handling the diagonal element,
1 all coefficients in the current column are solved and
2 all coefficients in the trailing submatrix are updated

Both steps perform independent operations and can be
parallelised:

for (size_t i = 0; i < n; ++i) {
#pragma omp parallel
{
#pragma omp for
for (size_t j = i+1; j < n; ++j)
A(j,i) = A(j,i) / A(i,i);

#pragma omp for collapse(2)
for (size_t j = i+1; j < n; ++j)
for (size_t k = i+1; k < n; ++k)
A(j,k) = A(j,k) - A(j,i) ∗ A(i,k);

} }

The update phase involves O
(
n2) independent operations and hence, may use

many processors simultaneously. However, each sub operation only handles a
single coefficient.

Kriemann, »Introduction to Parallel Programming« 120

Example: LU Factorisation
Task based Computations

As with the matrix multiplication, LU factorisation will benefit from cache
locality. A sequential implementation of the blocked LU factorisation is given by

for (size_t i = 0; i < n/N; ++i) {
load_block(A, A_ii, i, i);
lu(A_ii); // factorise A_ii
store_block(A, A_ii, i, i);

for (size_t j = i+1; j < n/N; ++j) { // solve
load_block(A, TA, j, i);
solve_upper(TA, A_ii); // L_ji U_ii = A_ji
store_block(A, TA, j, i);

load_block(A, TA, i, j);
solve_lower(A_ii, TA); // U_ij L_ii = A_ij
store_block(A, TA, i, j);

}

for (size_t j = i+1; j < n/N; ++j) {
for (size_t k = i+1; k < n/N; ++k) {
load_block(A, L_ji, j, i);
load_block(A, U_ik, i, k);
load_block(A, TA, j, k); // A_jk -= L_ji∗U_ik
multiply_sub(L_ji, U_ik, TA);
store_block(A, TA, j, k);

} } }

Again, the outer loop has to be handled in strict sequential order. Solving is now
also performed for the current row. Furthermore, the number of independent
operations is now reduced by a factor if N for solving and N2 for the matrix
updates.

Kriemann, »Introduction to Parallel Programming« 121

Example: LU Factorisation
Task based Computations

As with the matrix multiplication, LU factorisation will benefit from cache
locality. A sequential implementation of the blocked LU factorisation is given by

for (size_t i = 0; i < n/N; ++i) {
load_block(A, A_ii, i, i);
lu(A_ii); // factorise A_ii
store_block(A, A_ii, i, i);

for (size_t j = i+1; j < n/N; ++j) { // solve
load_block(A, TA, j, i);
solve_upper(TA, A_ii); // L_ji U_ii = A_ji
store_block(A, TA, j, i);

load_block(A, TA, i, j);
solve_lower(A_ii, TA); // U_ij L_ii = A_ij
store_block(A, TA, i, j);

}

for (size_t j = i+1; j < n/N; ++j) {
for (size_t k = i+1; k < n/N; ++k) {
load_block(A, L_ji, j, i);
load_block(A, U_ik, i, k);
load_block(A, TA, j, k); // A_jk -= L_ji∗U_ik
multiply_sub(L_ji, U_ik, TA);
store_block(A, TA, j, k);

} } }

Again, the outer loop has to be handled in strict sequential order. Solving is now
also performed for the current row. Furthermore, the number of independent
operations is now reduced by a factor if N for solving and N2 for the matrix
updates.

Kriemann, »Introduction to Parallel Programming« 121

Example: LU Factorisation
Task based Computations

As with the matrix multiplication, LU factorisation will benefit from cache
locality. A sequential implementation of the blocked LU factorisation is given by

for (size_t i = 0; i < n/N; ++i) {
load_block(A, A_ii, i, i);
lu(A_ii); // factorise A_ii
store_block(A, A_ii, i, i);

for (size_t j = i+1; j < n/N; ++j) { // solve
load_block(A, TA, j, i);
solve_upper(TA, A_ii); // L_ji U_ii = A_ji
store_block(A, TA, j, i);

load_block(A, TA, i, j);
solve_lower(A_ii, TA); // U_ij L_ii = A_ij
store_block(A, TA, i, j);

}

for (size_t j = i+1; j < n/N; ++j) {
for (size_t k = i+1; k < n/N; ++k) {
load_block(A, L_ji, j, i);
load_block(A, U_ik, i, k);
load_block(A, TA, j, k); // A_jk -= L_ji∗U_ik
multiply_sub(L_ji, U_ik, TA);
store_block(A, TA, j, k);

} } }

Again, the outer loop has to be handled in strict sequential order. Solving is now
also performed for the current row. Furthermore, the number of independent
operations is now reduced by a factor if N for solving and N2 for the matrix
updates.

Kriemann, »Introduction to Parallel Programming« 121

Example: LU Factorisation
Task based Computations

Using tasks, each solve or update operation may be performed as a single task:
for (size_t i = 0; i < n/N; ++i) {

load_block(A, A_ii, i, i);
lu(A_ii); // factorise A_ii
store_block(A, A_ii, i, i);

for (size_t j = i+1; j < n/N; ++j) {
#pragma omp task firstprivate(j) shared(A,A_ii)
{ Matrix A_ji(N,N); // task private

load_block(A, A_ji, j, i);
solve_upper(TA, A_ii); // L_ji U_ii = A_ji
store_block(A, A_ji, j, i);

}
#pragma omp task firstprivate(j) shared(A,A_ii)
{ Matrix A_ij(N,N); // task private

load_block(A, A_ij, i, j);
solve_lower(A_ii, A_ij); // U_ij L_ii = A_ij
store_block(A, A_ij, i, j);

} }
#pragma omp taskwait // wait for all solves
for (size_t j = i+1; j < n/N; ++j) {
for (size_t k = i+1; k < n/N; ++k) {
#pragma omp task firstprivate(j,k) shared(A)
{ Matrix A_jk(N,N), L_ji(N,N), U_ik(N,N); // task private

load_block(A, L_ji, j, i);
load_block(A, U_ik, i, k);
load_block(A, A_jk, j, k);
multiply_sub(L_ji, U_ik, A_jk); // A_jk -= L_ji∗U_ik
store_block(A, A_jk, j, k);

} } }
#pragma omp taskwait // wait for all updates

}

Kriemann, »Introduction to Parallel Programming« 122

Example: LU Factorisation
Task based Computations

Finally, the following speedups are achieved by the different versions of the LU
factorisation for n = 8192 and N = 64:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

block vs. point wise 1.20x 1.05x 1.42x

parallel
point wise 1.11x 1.57x 0.24x
block wise 9.43x 12.44x 0.59x

The difference between point and block wise in the sequential case is not as
large as for matrix multiplication.

However, parallelising the point wise LU factorisation is very inefficient, due to
the bad ratio of task computation and overhead.

The better approach is the parallel block wise factorisation, which achieves
(nearly) optimal speedup. Except on the MIC architecture, which currently
seems to have a problem with tasks.

Kriemann, »Introduction to Parallel Programming« 123

Example: LU Factorisation
Task based Computations

Using the for directive to parallelise the block wise LU factorization resulted in
the following, only slightly worse speedup:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

parallel block wise
task 9.43x 12.44x 0.59x
for 9.28x 12.20x 118.21x

Kriemann, »Introduction to Parallel Programming« 124

Miscellanea

Kriemann, »Introduction to Parallel Programming« 125

Thread Private Data
Miscellanea

Up to now, data is associated with implicitly or explicitly defined tasks:
#pragma omp parallel shared(x,n) private(y) // p implicit tasks
{

... // access to x,n,y

#pragma omp for // n/p implicit tasks
for (size_t i = 0; i < n; ++i)
{
... // access to x,n,y,i

}

#pragma omp single
for (int j = 0; j < 4; ++j)
{
#pragma omp task firstprivate(j,x) // 4 explicit tasks
{
... // access to j,x

}
}

}

For implict tasks, task and thread are tightly coupled and may be used
interchangeably.

However, a thread is the software unit which executes tasks and does not define
them. This distinction is more obvious for explicit tasks, especially untied tasks.

Kriemann, »Introduction to Parallel Programming« 126

Thread Private Data
Miscellanea

In OpenMP, data can also be coupled with threads. Such data is called
thread-private and is declared by the directive
#pragma omp threadprivate (var1,var2,...)

The lifetime of a threadprivate variable must not depend on the scope of a
function. Hence, thread-private variables must either be in the scope of files or
namespaces:
double x; // file scope
#pragma omp threadprivate(x)

void f () { ... }

namespace X {
double y; // namespace scope
#pragma omp threadprivate(y)
...

}

or declared static:

static double x;
#pragma omp threadprivate(x)

void f () {
static double y;
#pragma omp threadprivate(y)
...

}

struct A {
static double z;
#pragma omp threadprivate(z)
...

}

Kriemann, »Introduction to Parallel Programming« 127

Thread Private Data
Miscellanea

The inital value of thread-private variables equals the value at the declaration.
int n = 0;
#pragma omp threadprivate(n)

int main () {
#pragma omp parallel
{
... // n == 0

} }

Changes after declaration will only affect the private variable of each thread:
int n = 0;
#pragma omp threadprivate(n)

int main () {
#pragma omp parallel
{
n = 2 ∗ omp_get_thread_num(); // n == 2∗i in thread i

} }

Since the main function or the function of the master thread is already executed
by a thread, this also applies to changes therein:
int n = 0;
#pragma omp threadprivate(n)

int main () {
n = 10; // change n of main/master thread

#pragma omp parallel
{ // n == 10 in master thread, n == 0 in all other threads
n = 2 ∗ omp_get_thread_num(); // n == 2∗i in thread i

} }

Kriemann, »Introduction to Parallel Programming« 128

Copyin Clause
Thread Private Data

To update the value of thread private variables when entering a parallel
region, OpenMP provides the clause

#pragma omp parallel copyin (var1,var2,...)

The master thread value of a variable in the list of the copyin clause is then
copied to all thread-private variables of the newly created team thread:
int n = 0;
#pragma omp threadprivate(n)

int main () {
n = 10; // change n of main/master thread

#pragma omp parallel copyin(n)
{ // n == 10 in all threads
n = 2 ∗ omp_get_thread_num(); // n == 2∗i in thread i

} }

Remark
The copy assigment operator is used for copyin variables. Arrays are copied
elementwise. For classes, the corresponding operator has to be accessible.

Kriemann, »Introduction to Parallel Programming« 129

Restrictions
Thread Private Data

Beside the limitation to file or namespace scope and static variables, further
restrictions apply to threadprivate variables:

• Thread private variables may only be used in copyin, copyprivate,
schedule or num_threads clauses:
int n = 0;
#pragma omp threadprivate(n)
...
#pragma omp parallel shared(n) // error: invalid clause

• A reference to a thread private variable must not appear before the
threadprivate declaration:
void f (int & i) {
static int n = 0;
...
j = i ∗ n; // error: reference before declaration
#pragma omp threadprivate(n)

}

• Thread private variables of class type must have an accessible default and
copy constructor and a constructor for a given intialisation:
struct A {
A ();

private:
A (const A &); // error: not accessible

};
static A a = double(2); // error: no constructor
#pragma omp threadprivate(a)

Kriemann, »Introduction to Parallel Programming« 130

Thread Scheduling
Miscellanea

OpenMP itself only provides very limited control over the scheduling of the
threads on to processors.

The following two environment variables are available

OMP_PROC_BIND: If set to true, the OpenMP threads will not be moved
between processes, i.e. once spawned, they are bound to
a specific processor.

OMP_DYNAMIC: If set to false, OpenMP threads will not be created
dynamically, e.g. a fixed set of threads is created upon
program start (or at the first parallel directive).

For both variables, the default value depends on the OpenMP implementation,
e.g. the compiler used.

In case of OMP_DYNAMIC, the GNU and Intel compiler both default to false.

Kriemann, »Introduction to Parallel Programming« 131

Thread Scheduling
Miscellanea

The Intel and the GNU compiler also provide special environment variables to
explicitly define the mapping of threads to processors using the processor affinity
map of the Linux operating system.

Intel Compiler
The processor affinity of threads is controlled by the KMP_AFFINITY environment
variable.
Two different levels of control are provided. The high level gives general control
over the assignment of threads with the values compact and scatter :

KMP_AFFINITY=compact KMP_AFFINITY=scatter

Place thread i + 1 as close as
possible to thread i, e.g. first fill
all cores of same processor.

Distribute threads as evenly as
possible over system, e.g. assign
thread to not yet used processor.

2 63 7

0 41 5

2 36 7

0 14 5
(Example with 8 threads on four dual-core CPUs.)

Kriemann, »Introduction to Parallel Programming« 132

Thread Scheduling
Miscellanea

The low level interface uses an explicit processor list. For each thread the
corresponding processor is specified.

For this, KMP_AFFINITY has to be set to explicit with the additional
proclist argument:

KMP_AFFINITY="explicit ,proclist =[0 2 4 6]"

Here, the thread 0 is assigned to processor 0, thread 1 to processor 2, etc..

GNU Compiler
The GNU compiler only supports the low level interface for thread affinity. The
corresponding environment variable is GOMP_CPU_AFFINITY :

GOMP_CPU_AFFINITY="0 2 4 6"

The general format for GOMP_CPU_AFFINITY is N −M : S, with start processor
N , end processor M and optional stride S, e.g.:

GOMP_CPU_AFFINITY ="0 -6:2"

is identical to the above statement.

Kriemann, »Introduction to Parallel Programming« 133

If Clause
Miscellanea

For the parallel and the task directive, OpenMP allows the conditional
parallel execution of the corresponding constructs in the form of the if clause:

#pragma omp parallel if(expression)

or

#pragma omp task if(expression)

In case of the parallel directive, if the if clause evaluates to false, no parallel
team is formed and the construct is executed sequentially by the master thread:
double dot (const size_t n, double ∗ x, double ∗ y) {

double f = 0;

#pragma omp parallel for reduction(+:f) if(n>=1000)
for (size_t i = 0; i < n; ++i)
f += x[i] ∗ y[i];

return f;
}

Here, parallel execution is only started if enough work per thread is available and
the overhead of task generation and task scheduling can be neglected.

For the task directive, if the expression of the if clause is false, the
encountering task is suspended and the new task is immediately executed.

Kriemann, »Introduction to Parallel Programming« 134

C++ Exceptions
Miscellanea

When throwing exceptions in C++, OpenMP enforces a strict handling of these
exceptions:

All exceptions thrown within a region of an OpenMP directive have to
be catched with the same region by the same thread (or task) throwing
the exception.

This applies to all directives generating explicit or implicit tasks, i.e. parallel,
for, section, single, task, master, critical and ordered.

Hence, the following handling is not allowed:
try {

#pragma omp parallel for
for (size_t i = 0; i < n; ++i) {
if (x[i] == 0)
throw "division by zero";

else
x[i] = 1.0 / x[i];

}
}
catch (const char ∗ e) { // error: exception not catched within same thread

std::cout << e << std::endl;
}

Kriemann, »Introduction to Parallel Programming« 135

Literature

“OpenMP Application Program Interface, Version 3.1”. http://www.openmp.org.

“OpenMP Application Program Interface, Version 4.0 RC2”. http://www.openmp.org.

Vladimirov, A. and V. Karpusenko. “Test-driving Intel Xeon Phi coprocessors with a basic N-body simulation”.
http://research.colfaxinternational.com/.

Kriemann, »Introduction to Parallel Programming« 136

	Introduction
	Thread Creation
	Parallelising Loops
	Sections
	Single Execution
	Thread Synchronisation
	Task based Computations
	Miscellanea
	Appendix
	Literature

