
H-Matrix Parallelisation

Ronald Kriemann

Max Planck Institute for Mathematics

in the

Sciences Leipzig

Winterschool on H-Matrices
2009 HHHHHHHHHHHHHHHHHHHHH

Lib
pro

H
Lib

pro

H-Matrix Parallelisation 1/34

Overview

1 Introduction

2 Technical Prerequisites

3 Matrix Construction

4 Preconditioning

5 Conclusion and Outlook

H-Matrix Parallelisation 2/34

Introduction

H-Matrix Parallelisation 3/34

Introduction

Problem

• Matrix construction is very expensive for BEM problems,

• solving equation systems often needs preconditioning, but
H-LU factorisation is also expensive.

Goal

Exploit parallel capabilities of PCs or workstations to accelerate
H-arithmetics.

Conditions

• parallelise only for few processors,

• recycle existing algorithm,

• achieve high parallel speedup

H-Matrix Parallelisation 4/34

Introduction

Problem

• Matrix construction is very expensive for BEM problems,

• solving equation systems often needs preconditioning, but
H-LU factorisation is also expensive.

Goal

Exploit parallel capabilities of PCs or workstations to accelerate
H-arithmetics.

Conditions

• parallelise only for few processors,

• recycle existing algorithm,

• achieve high parallel speedup

H-Matrix Parallelisation 4/34

Introduction

Problem

• Matrix construction is very expensive for BEM problems,

• solving equation systems often needs preconditioning, but
H-LU factorisation is also expensive.

Goal

Exploit parallel capabilities of PCs or workstations to accelerate
H-arithmetics.

Conditions

• parallelise only for few processors,

• recycle existing algorithm,

• achieve high parallel speedup

H-Matrix Parallelisation 4/34

Technical Prerequisites

H-Matrix Parallelisation 5/34

Technical Prerequisites System Architecture

Workstations and small compute servers are usually systems with a
shared memory, e.g. all p processors have direct access to the same
memory:

CPU CPU CPU. . .CPU

Memory

Consequences

• simplified programming because no communications involved,

• but protection of critical resources necessary, e.g.
simultaneous access to the same memory position

H-Matrix Parallelisation 6/34

Technical Prerequisites System Architecture

Workstations and small compute servers are usually systems with a
shared memory, e.g. all p processors have direct access to the same
memory:

CPU CPU CPU. . .CPU

Memory

Consequences

• simplified programming because no communications involved,

• but protection of critical resources necessary, e.g.
simultaneous access to the same memory position

H-Matrix Parallelisation 6/34

Technical Prerequisites Threads

The standard parallelisation tool on shared memory systems are
threads, i.e. parallel computation paths in a program. All threads
can read and write all memory used by the program.

Each program has a main thread, e.g. the main function in a C
program. Afterwards, new threads can be started, e.g:

Also possible is nested parallelism: starting new threads from other
threads.

H-Matrix Parallelisation 7/34

Technical Prerequisites Threads

The standard parallelisation tool on shared memory systems are
threads, i.e. parallel computation paths in a program. All threads
can read and write all memory used by the program.

Each program has a main thread, e.g. the main function in a C
program. Afterwards, new threads can be started, e.g:

parallel modemain thread

program

Also possible is nested parallelism: starting new threads from other
threads.

H-Matrix Parallelisation 7/34

Technical Prerequisites Threads

The standard parallelisation tool on shared memory systems are
threads, i.e. parallel computation paths in a program. All threads
can read and write all memory used by the program.

Each program has a main thread, e.g. the main function in a C
program. Afterwards, new threads can be started, e.g:

parallel modemain thread

program

Also possible is nested parallelism: starting new threads from other
threads.H-Matrix Parallelisation 7/34

Technical Prerequisites Mutices

A mutex is a tool for mutual exclusion of critical sections in a
program. It is either LOCKED or UNLOCKED.

Locking an already locked mutex blocks the thread until the mutex
is unlocked by another thread.

Example

Compute A := A+
∑4

i=1Ai, with matrices A and Ai, i = 1, . . . , 4:

On thread 1:

T1 := A1 +A2;

lock mutex m;

A := A+ T1;

unlock mutex m;

On thread 2:

T2 := A3 +A4;

lock mutex m;

A := A+ T2;

unlock mutex m;

with shared mutex m.

H-Matrix Parallelisation 8/34

Technical Prerequisites Mutices

A mutex is a tool for mutual exclusion of critical sections in a
program. It is either LOCKED or UNLOCKED.

Locking an already locked mutex blocks the thread until the mutex
is unlocked by another thread.

Example

Compute A := A+
∑4

i=1Ai, with matrices A and Ai, i = 1, . . . , 4:

On thread 1:

T1 := A1 +A2;

lock mutex m;

A := A+ T1;

unlock mutex m;

On thread 2:

T2 := A3 +A4;

lock mutex m;

A := A+ T2;

unlock mutex m;

with shared mutex m.

H-Matrix Parallelisation 8/34

Technical Prerequisites Mutices

A mutex is a tool for mutual exclusion of critical sections in a
program. It is either LOCKED or UNLOCKED.

Locking an already locked mutex blocks the thread until the mutex
is unlocked by another thread.

Example

Compute A := A+
∑4

i=1Ai, with matrices A and Ai, i = 1, . . . , 4:

On thread 1:

T1 := A1 +A2;
lock mutex m;
A := A+ T1;
unlock mutex m;

On thread 2:

T2 := A3 +A4;
lock mutex m;
A := A+ T2;
unlock mutex m;

with shared mutex m.

H-Matrix Parallelisation 8/34

Technical Prerequisites Thread Implementations

How to access threads in a program, e.g. how to start new threads
and synchronise them via mutices?

Widely used implementations:

• POSIX threads:

+ powerful, almost everywhere available

- complicate interface

• OpenMP:

+ simple interface

- mainly developed for loop parallelisation, needs compiler
support

H-Matrix Parallelisation 9/34

Technical Prerequisites Thread Implementations

How to access threads in a program, e.g. how to start new threads
and synchronise them via mutices?

Widely used implementations:

• POSIX threads:

+ powerful, almost everywhere available

- complicate interface

• OpenMP:

+ simple interface

- mainly developed for loop parallelisation, needs compiler
support

H-Matrix Parallelisation 9/34

Technical Prerequisites Thread Implementations

How to access threads in a program, e.g. how to start new threads
and synchronise them via mutices?

Widely used implementations:

• POSIX threads:

+ powerful, almost everywhere available

- complicate interface

• OpenMP:

+ simple interface

- mainly developed for loop parallelisation, needs compiler
support

H-Matrix Parallelisation 9/34

Technical Prerequisites OpenMP

Language enhancements for C/C++ and FORTRAN for thread
creation, loop parallelisation and synchronisation.

Example for linear combination of vectors: y := y + αx:

#pragma omp parallel for
for (i = 0; i < n; i++)

y[i] := y[i] + alpha * x[i];

At the pragma directive p threads are started. The loop is
automatically parallelised and after finishing, all threads are
synchronised. If no OpenMP support is available, the directive is
ignored by the compiler.

OpenMP is supported by all major compiler vendors: GNU, Intel,
Sun, Microsoft but with varying degree, e.g. nested parallelism.

H-Matrix Parallelisation 10/34

Technical Prerequisites OpenMP

Language enhancements for C/C++ and FORTRAN for thread
creation, loop parallelisation and synchronisation.

Example for linear combination of vectors: y := y + αx:

#pragma omp parallel for
for (i = 0; i < n; i++)

y[i] := y[i] + alpha * x[i];

At the pragma directive p threads are started. The loop is
automatically parallelised and after finishing, all threads are
synchronised. If no OpenMP support is available, the directive is
ignored by the compiler.

OpenMP is supported by all major compiler vendors: GNU, Intel,
Sun, Microsoft but with varying degree, e.g. nested parallelism.

H-Matrix Parallelisation 10/34

Technical Prerequisites OpenMP

Language enhancements for C/C++ and FORTRAN for thread
creation, loop parallelisation and synchronisation.

Example for linear combination of vectors: y := y + αx:

#pragma omp parallel for
for (i = 0; i < n; i++)

y[i] := y[i] + alpha * x[i];

At the pragma directive p threads are started. The loop is
automatically parallelised and after finishing, all threads are
synchronised. If no OpenMP support is available, the directive is
ignored by the compiler.

OpenMP is supported by all major compiler vendors: GNU, Intel,
Sun, Microsoft but with varying degree, e.g. nested parallelism.

H-Matrix Parallelisation 10/34

Technical Prerequisites OpenMP

Other OpenMP Directives

#pragma omp parallel

Starts p threads executing the following code block.

#pragma omp critical

Provides mutual exclusion, e.g. mutices, for the following code
block.

OpenMP Functions and Types

For explicit mutices, the type omp lock t is defined by OpenMP
with the functions

// lock given mutex
void omp_set_lock (omp_lock_t * mutex);
// unlock given mutex
void omp_unset_lock (omp_lock_t * mutex);

H-Matrix Parallelisation 11/34

Technical Prerequisites OpenMP

Other OpenMP Directives

#pragma omp parallel

Starts p threads executing the following code block.

#pragma omp critical

Provides mutual exclusion, e.g. mutices, for the following code
block.

OpenMP Functions and Types

For explicit mutices, the type omp lock t is defined by OpenMP
with the functions

// lock given mutex
void omp_set_lock (omp_lock_t * mutex);
// unlock given mutex
void omp_unset_lock (omp_lock_t * mutex);

H-Matrix Parallelisation 11/34

Matrix Construction

H-Matrix Parallelisation 12/34

Matrix Construction Sequential Algorithm

Let I be an index set with #I = n, T (I) a cluster tree over I and
T (I × I) a block cluster tree over I × I.

Build matrix blocks only for leaves in block cluster tree:

for (t, s) ∈ L(T (I × I)) do
if (t, s) is admissible then build low rank matrix;
else build dense matrix;

endfor;

Properties:

• all matrix blocks can be built independently,

• #L(T (I × I))� p, e.g. enough to do for each processor and
no explicit scheduling necessary.

H-Matrix Parallelisation 13/34

Matrix Construction Sequential Algorithm

Let I be an index set with #I = n, T (I) a cluster tree over I and
T (I × I) a block cluster tree over I × I.

Build matrix blocks only for leaves in block cluster tree:

for (t, s) ∈ L(T (I × I)) do
if (t, s) is admissible then build low rank matrix;
else build dense matrix;

endfor;

Properties:

• all matrix blocks can be built independently,

• #L(T (I × I))� p, e.g. enough to do for each processor and
no explicit scheduling necessary.

H-Matrix Parallelisation 13/34

Matrix Construction Parallel Algorithm

Apply OpenMP parallelisation directly to loop:

leaves = ... // list of leaves
#pragma omp parallel {

while (! is_empty(leaves)) {
// guard change of leaves set by mutex
#pragma omp critical {

cluster = head(leaves);
leaves = tail(leaves);

}

if (is_adm(cluster))
M = build_lowrank(cluster);

else
M = build_dense(cluster);

} }

Building block matrices is cheap and can be done sequentially.

H-Matrix Parallelisation 14/34

Matrix Construction Parallel Algorithm

Apply OpenMP parallelisation directly to loop:

leaves = ... // list of leaves
#pragma omp parallel {

while (! is_empty(leaves)) {
// guard change of leaves set by mutex
#pragma omp critical {

cluster = head(leaves);
leaves = tail(leaves);

}

if (is_adm(cluster))
M = build_lowrank(cluster);

else
M = build_dense(cluster);

} }

Building block matrices is cheap and can be done sequentially.

H-Matrix Parallelisation 14/34

Matrix Construction Numerical Experiments

For Helmholtz Double Layer Potential in R3:

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

No. of Processors

 Opteron
 Core2
 S(p) = p

H-Matrix Parallelisation 15/34

Matrix Construction Remarks

Matrix Construction with Hierarchy

1 first build all leaves in parallel

2 build block matrices corresponding to inner nodes afterwards
sequentially

Matrix construction with Coarsening

1 insert all leaves of block cluster tree into work set

2 iterate until work set is empty
1 obtain block cluster and handle corresponding matrix

• if leaf: construct matrix
• if inner node: try to coarsen

2 check all sons of father block cluster,
3 if all son matrices have been constructed, insert block cluster

into work set

H-Matrix Parallelisation 16/34

Matrix Construction Remarks

Matrix Construction with Hierarchy

1 first build all leaves in parallel

2 build block matrices corresponding to inner nodes afterwards
sequentially

Matrix construction with Coarsening

1 insert all leaves of block cluster tree into work set

2 iterate until work set is empty
1 obtain block cluster and handle corresponding matrix

• if leaf: construct matrix
• if inner node: try to coarsen

2 check all sons of father block cluster,
3 if all son matrices have been constructed, insert block cluster

into work set

H-Matrix Parallelisation 16/34

Preconditioning

H-Matrix Parallelisation 17/34

Preconditioning

We are looking for a good preconditioner for the linear equation
system

Ax = y

where A is an H-Matrix.

Good guess for a preconditioner: P = A−1. Therefore use
H-matrix inverse P̃ = A∼1.

For iterative schemes one only needs matrix-vector multiplication,
therefore H-LU factorisation is sufficient for evaluating A∼1 and
cheaper to compute.

H-Matrix Parallelisation 18/34

Preconditioning Sequential Algorithm

Assume A has 2× 2 block structure:(
L11

L21 L22

)
·
(
U11 U12

U22

)
=
(
A11 A12

A21 A22

)

Solving the above system, one obtains:

L11U11 = A11, L11U12 = A12,

L21U11 = A21, L22U22 = A′22

with
A′22 = A22 − L21U12.

This involves two recursive calls, two matrix solves and one
multiplication (with addition).

H-Matrix Parallelisation 19/34

Preconditioning Matrix Solve

Again, assume 2× 2 block structure and consider BU = C with
known C and upper triangular U , e.g. L21U11 = A21 from above.

(
B11 B12

B21 B22

)
·
(
U11 U12

U22

)
=
(
C11 C12

C21 C22

)

This leads to

B11U11 = C11, B12U22 = C ′12,

B21U11 = C21, B22U22 = C ′22

with

C ′12 = C12 −B11U12 and C ′22 = C22 −B21U12

involving four recursions and two multiplications.

H-Matrix Parallelisation 20/34

Preconditioning Parallel Matrix Multiplication

H-LU factorisation and matrix solve only involves recursive calls
and multiplications. Therefore, parallelising the multiplications,
parallelises the H-LU factorisation.

C := αAB + βC

Sequential algorithm for a m×m block matrix:

void mul (alpha, A, B, beta, C) {
if (is_blocked(A) && is_blocked(B) &&

is_blocked(C))
for (i = 0; i < m; i++)

for (j = 0; j < m; j++)
for (l = 0; l < m; l++)

mul(alpha, A_il, B_lj, beta, C_ij);
else

C := alpha * A * B + beta * C;
}

H-Matrix Parallelisation 21/34

Preconditioning Parallel Matrix Multiplication

H-LU factorisation and matrix solve only involves recursive calls
and multiplications. Therefore, parallelising the multiplications,
parallelises the H-LU factorisation.

C := αAB + βC

Sequential algorithm for a m×m block matrix:

void mul (alpha, A, B, beta, C) {
if (is_blocked(A) && is_blocked(B) &&

is_blocked(C))
for (i = 0; i < m; i++)

for (j = 0; j < m; j++)
for (l = 0; l < m; l++)

mul(alpha, A_il, B_lj, beta, C_ij);
else

C := alpha * A * B + beta * C;
}

H-Matrix Parallelisation 21/34

Preconditioning Parallel Matrix Multiplication

Collect all atomic multiplications into list and apply OpenMP
parallelisation to list:
void mul_sim (A, B, C, list) {

if (is_blocked(A) && is_blocked(B) && is_blocked(C))
for (i, j, l = 0; i, j, l < m; i++, j++, l++)

mul_sim(A_il, B_lj, C_ij, list);
else

append(list, { C, A, B }); }

void mul (alpha, A, B, beta, C) {
mul_sim(A, B, C, list);
#pragma omp parallel {

while (! is_empty(list)) {
#pragma omp critical {

product = head(list);
list = tail(list);

}

T = alpha * product.A * product.B;

omp_set_lock(mutex(product.C)); // guard access to C
product.C = beta * product.C + T;
omp_unset_lock(mutex(product.C));

} } }

H-Matrix Parallelisation 22/34

Preconditioning Parallel Matrix Multiplication

Collect all atomic multiplications into list and apply OpenMP
parallelisation to list:
void mul_sim (A, B, C, list) {

if (is_blocked(A) && is_blocked(B) && is_blocked(C))
for (i, j, l = 0; i, j, l < m; i++, j++, l++)

mul_sim(A_il, B_lj, C_ij, list);
else

append(list, { C, A, B }); }

void mul (alpha, A, B, beta, C) {
mul_sim(A, B, C, list);
#pragma omp parallel {

while (! is_empty(list)) {
#pragma omp critical {

product = head(list);
list = tail(list);

}

T = alpha * product.A * product.B;

omp_set_lock(mutex(product.C)); // guard access to C
product.C = beta * product.C + T;
omp_unset_lock(mutex(product.C));

} } }

H-Matrix Parallelisation 22/34

Preconditioning Improved Parallel Matrix Multiplication

Collect products per matrix to reduce collisions:
void mul_sim2 (A, B, C) {

if (is_blocked(A) && is_blocked(B) && is_blocked(C))
for (i, j, l = 0; i, j, l < m; i++, j++, l++)

mul_sim2(A_il, B_lj, C_ij);
else

append(C.list, { A, B }); }

Numerical Experiments (LU, Helmholtz DLP)

 1

 1.5

 2

 2.5

 3

 1 2 3 4

S
pe

ed
up

No. of Processors

 Opteron
 Core2
 S(p) = p

H-Matrix Parallelisation 23/34

Preconditioning Improved Parallel Matrix Multiplication

Collect products per matrix to reduce collisions:
void mul_sim2 (A, B, C) {

if (is_blocked(A) && is_blocked(B) && is_blocked(C))
for (i, j, l = 0; i, j, l < m; i++, j++, l++)

mul_sim2(A_il, B_lj, C_ij);
else

append(C.list, { A, B }); }

Numerical Experiments (LU, Helmholtz DLP)

 1

 1.5

 2

 2.5

 3

 1 2 3 4

S
pe

ed
up

No. of Processors

 Opteron
 Core2
 S(p) = p

H-Matrix Parallelisation 23/34

Preconditioning Alternative I: Block Diagonal Preconditioner

Successively remove off-diagonal blocks from H-matrix with
increasing number of processors:

p = 1

p = 2 p = 4 p = 8

H-Matrix Parallelisation 24/34

Preconditioning Alternative I: Block Diagonal Preconditioner

Successively remove off-diagonal blocks from H-matrix with
increasing number of processors:

p = 1 p = 2

p = 4 p = 8

H-Matrix Parallelisation 24/34

Preconditioning Alternative I: Block Diagonal Preconditioner

Successively remove off-diagonal blocks from H-matrix with
increasing number of processors:

p = 1 p = 2 p = 4

p = 8

H-Matrix Parallelisation 24/34

Preconditioning Alternative I: Block Diagonal Preconditioner

Successively remove off-diagonal blocks from H-matrix with
increasing number of processors:

p = 1 p = 2 p = 4 p = 8

H-Matrix Parallelisation 24/34

Preconditioning Alternative I: Block Diagonal Preconditioner

Assume 2× 2 block structure of all block matrices in given
H-matrix. Then, the algorithm for the parallel LU factorisation for
block diagonal matrices is:

void blockdiag_LU (p, A) {
if (p == 1) LU(A);
else {

#pragma omp parallel for num_threads(2)
for (i = 0; i < 2; i++)

blockdiag_LU(p/2, A_ii);
} } }

The OpenMP option num threads(2) ensures, that only two
threads are started.

This approach requires support for nested parallelism in OpenMP
implementation.

H-Matrix Parallelisation 25/34

Preconditioning Alternative II: Nested Dissection

Assume a finite element discretisation for a partial differential
equation, e.g. with piecewise linear ansatz functions. Since the
support of the basis functions is local, one can find a subset Γ of
I, such that the remaining indices are decomposed into decoupled
sets:

Ω

Γ

Γ1

Γ0

Ω0

Ω1

Ω00

Ω10 Ω11

Ω01

I × I

Γ

Γ

Γ0

Γ0

Γ1

Γ1

Recursively apply this procedure to the created sub index sets.

H-Matrix Parallelisation 26/34

Preconditioning Alternative II: Nested Dissection

Assume a finite element discretisation for a partial differential
equation, e.g. with piecewise linear ansatz functions. Since the
support of the basis functions is local, one can find a subset Γ of
I, such that the remaining indices are decomposed into decoupled
sets:

Ω

Γ

Γ1

Γ0

Ω0

Ω1

Ω00

Ω10 Ω11

Ω01

I × I

Γ

Γ

Γ0

Γ0

Γ1

Γ1

Recursively apply this procedure to the created sub index sets.

H-Matrix Parallelisation 26/34

Preconditioning Alternative II: Nested Dissection

Assume a finite element discretisation for a partial differential
equation, e.g. with piecewise linear ansatz functions. Since the
support of the basis functions is local, one can find a subset Γ of
I, such that the remaining indices are decomposed into decoupled
sets:

Ω

Γ

Γ1

Γ0

Ω0

Ω1

Ω00

Ω10 Ω11

Ω01

I × I

Γ

Γ

Γ0

Γ0

Γ1

Γ1

Recursively apply this procedure to the created sub index sets.
H-Matrix Parallelisation 26/34

Preconditioning Alternative II: Nested Dissection

Assume a finite element discretisation for a partial differential
equation, e.g. with piecewise linear ansatz functions. Since the
support of the basis functions is local, one can find a subset Γ of
I, such that the remaining indices are decomposed into decoupled
sets:

Ω

Γ

Γ1

Γ0

Ω0

Ω1

Ω00

Ω10 Ω11

Ω01

I × I

Γ

Γ

Γ0

Γ0

Γ1

Γ1

Recursively apply this procedure to the created sub index sets.
H-Matrix Parallelisation 26/34

Preconditioning Alternative II: Nested Dissection

The L and U factors in a LU factorisation of A have the same
structure as A:L11

L22

L31 L32 L33

 ·
U11 U13

U22 U23

U33

 =

A11 A13

A22 A23

A31 A32 A33


leading to

L11U11 = A11 L22U22 = A22

L31U11 = A31 L32U22 = A32

L11U13 = A13 L22U23 = A23

which can be handled independently and

L33U33 = A′33 with A′33 = A33 − L31U13 − L32U23.

#Γ should be small to have small sequential part.

H-Matrix Parallelisation 27/34

Preconditioning Alternative II: Nested Dissection

The L and U factors in a LU factorisation of A have the same
structure as A:L11

L22

L31 L32 L33

 ·
U11 U13

U22 U23

U33

 =

A11 A13

A22 A23

A31 A32 A33


leading to

L11U11 = A11 L22U22 = A22

L31U11 = A31 L32U22 = A32

L11U13 = A13 L22U23 = A23

which can be handled independently and

L33U33 = A′33 with A′33 = A33 − L31U13 − L32U23.

#Γ should be small to have small sequential part.

H-Matrix Parallelisation 27/34

Preconditioning Alternative II: Nested Dissection

void nd_LU (p, A) {
if (p == 1) LU(A);
else {

#pragma omp parallel for num_threads(2)
for (i = 0; i < 2; i++) {

nd_LU(p/2, A_ii);
nd_solve_lower(p/2, A_3i, A_ii);
nd_solve_upper(p/2, A_ii, A_i3);
T_i = nd_mul(p/2, A_3i, A_i3);

omp_set_lock(mutex(A_33));
A_33 = A_33 - T_i;
omp_unset_lock(mutex(A_33));

}
LU(A_33);

} }

H-Matrix Parallelisation 28/34

Preconditioning

Numerical Experiments

Poisson problem in Ω = [0, 1]3

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

No. of Processors

 n = 1023

 n = 1283

 S(p) = p

H-Matrix Parallelisation 29/34

Preconditioning

Nested Dissection: Remarks

• due to sparsity structure, nested dissection approach much
faster than standard bisection even sequentially:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

No. of Unknowns

 Nested Dissection
 Bisection

• computation of Γ and clustering I can be done purely
algebraically using graph partitioning for the sparse matrix.

H-Matrix Parallelisation 30/34

Preconditioning

Nested Dissection: Remarks

• due to sparsity structure, nested dissection approach much
faster than standard bisection even sequentially:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

No. of Unknowns

 Nested Dissection
 Bisection

• computation of Γ and clustering I can be done purely
algebraically using graph partitioning for the sparse matrix.

H-Matrix Parallelisation 30/34

Preconditioning

Nested Dissection: Remarks

• H-matrices with nested dissection faster than optimised direct
solvers:

 0

 5000

 10000

 15000

 20000

 200000 400000 600000 800000 1e+06

T
im

e
in

 s
ec

.

No. of Unknowns

 H-ND
 Pardiso
 UMFPACK

H-Matrix Parallelisation 31/34

Conclusion and Outlook

H-Matrix Parallelisation 32/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy),
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved

,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy),
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy)

,
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy),
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy),
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Conclusion and Outlook

Presented algorithms are either leaf oriented (matrix construction)
or use hierarchical parallelisation (LU with nested dissection).

Parallelisable with same techniques:

• Matrix Addition: only set of leaves involved,
• Matrix Vector Multiplication:

• again, with set of leaves,
• private destination vector per thread; has to be summed up in

parallel (axpy),
• Matrix Inversion:

• like LU factorisation, uses parallel matrix multiplication,
• much better speedup than LU factorisation.

For all algorithms, the achievable speedup is high compared to the
implementation costs.

Alternative: H-Lib
pro

already implements all presented algorithms
and much more.

HHHHHHHHHHHHHHHHHHHHH
Lib

pro
H
Lib

pro

H-Matrix Parallelisation 33/34

Literature

R. Kriemann,

Parallele Algorithmen für H-Matrizen,

Ph.D. Thesis, University of Kiel, 2005.

R. Kriemann,

Parallel H-Matrix Arithmetics on Shared Memory Systems,

Computing, 74:273–297, 2005.

M. Bebendorf and R. Kriemann,

Fast Parallel Solution of Boundary Integral Equations and Related
Problems,

Computing and Visualization in Science, 8(3–4):121–135, 2005.

L. Grasedyck, R. Kriemann and S. Le Borne,

Domain Decomposition Based H-LU Preconditioning,

to appear in “Numerische Mathematik”.

L. Grasedyck, R. Kriemann and S. Le Borne,

Parallel Black Box H-LU Preconditioning for Elliptic Boundary Value
Problems,

“Computing and Visualization in Science”, 11(4-6), pp. 273–291, 2008.

H-Matrix Parallelisation 34/34

