
Threading Building Blocks

Kriemann, »Introduction to Parallel Programming« 1

1. Introduction
1.1. Hello World
1.2. Library Initialisation

2. Lambda Functions
2.1. Captured Variables
2.2. Simplified Lambda Functions

3. Loops
3.1. Simple Loops
3.2. Reductions
3.3. General Loops
3.4. Pipeline

4. Task Groups

5. Tasks
5.1. The task Class
5.2. Allocation

5.3. Synchronisation
5.4. Example
5.5. Scheduling
5.6. Task Groups
5.7. Task Lists
5.8. DAG Computations

6. Mutual Exclusion
6.1. Scoped Locking
6.2. Reader/Writer Locks

7. Containers
7.1. Dynamic Arrays
7.2. Associative Arrays
7.3. Associative Sets
7.4. Queues

8. Miscellanea
8.1. Misc. Algorithms
8.2. Exceptions
8.3. Memory Allocation

Introduction
The Threading Building Blocks (TBB) is a C++ library developed by Intel to
specifically address programming of multi- and many-core systems. It supports
Linux, Windows and MacOSX and all major C++ compilers.

TBB is available as a commercially supported library from Intel or as an
open-source version from

http: // threadingbuildingblocks. org

TBB provides algorithms and data structures to define tasks in a parallel
program. These tasks are then mapped by an internal scheduler to worker
threads.

In contrast to other thread programming packages the programmer has no
access to these threads, only to the tasks.

TBB is using C++ templates extensively to minimise runtime overhead.

Remark
This course is based on Version 4 of TBB.

Kriemann, »Introduction to Parallel Programming« 3

http://threadingbuildingblocks.org

Introduction
Scheduling
By default tasks are enqueued into thread-local work queues.
In case of a load imbalance, task-stealing is used to transfer tasks to other
threads.
Also, the scheduler tries to preserve cache locality by scheduling tasks first,
which have been most recently in the cache.
This may result in unfair scheduling, i.e. other tasks may starve for processing
resources.

Limitations
Due to unfair scheduling, TBB is not designed for

• I/O operations, where a task may block until data can be fetched or
• realtime operations, since no guarentee upon the execution time can be
given.

Kriemann, »Introduction to Parallel Programming« 4

Hello World
Introduction

The standard introductory example looks as follows using TBB:
#include <iostream>
#include <tbb/tbb.h> // include all of TBB

using namespace tbb; // import TBB namespace

struct hello : public task { // Hello World Task
task ∗ execute () {
std::cout << "Hello, world!" << std::endl;
return nullptr;

}
};

int main () {
hello & t = ∗ new(task::allocate_root()) hello;
task::spawn_root_and_wait(t);
return 0;

}

Here, printing “Hello, World” is defined as a task and handed to the TBB
scheduler for execution.

Using the Intel compiler, a command line switch may be used to enable TBB:
> icpc -tbb -o hello hello .cc

All other compilers have to use the standard flags for include and library paths:
> g++ -I<path to TBB>/include -L<path to TBB>/lib -ltbb -o hello hello .cc

Kriemann, »Introduction to Parallel Programming« 5

Library Initialisation
Introduction

The TBB library needs no explicit initialisation. By default it will create worker
threads for each processor (core).

To initialise the TBB library with an explicitly defined number of worker threads,
the class task_scheduler_init is provided:
#include <tbb/task_scheduler_init.h>

void
main () {
tbb::task_scheduler_init tsi(nthreads);

...
}

Remark
The worker threads include the main thread, e.g. the initial thread of the process.

Kriemann, »Introduction to Parallel Programming« 6

Lambda Functions

Kriemann, »Introduction to Parallel Programming« 7

Lambda Functions
Lambda functions are anonymous functions in C++11, also called closures, which
are especially useful when using TBB.

A lambda functions consists of a function body and a data environment, similar
to a task.

The (almost) full definition of lambda functions is

[capture] (params) -> ret-type { body }

With

capture: defining the data environment,
params: function parameters,
ret-type: defines the function return type and

body: is the function body.

The last three correspond to the definition in standard named functions.

Kriemann, »Introduction to Parallel Programming« 8

Captured Variables
Lambda Functions

Variables referenced in the function body have to be imported to the data
environment of the lambda function.

Variables can either be captured by copy or by reference.

To capture a variable by copy, the variable has to be explicitly listed in the
capture description:
[x, y, i, j] ... // capture copy of x, y, i, j

Alternatively, with
[=] ... // all captured by copy

all variables referenced in the function body are automatically captured by copy.

If a variable should be captured by reference, the variable has to be prefixed by
& in the capture description:
[& x, & y, & i, & j] ... // capture reference of x, y, i, j

To capture all variables in the function body by reference, use
[&] ... // all captured by reference

Kriemann, »Introduction to Parallel Programming« 9

Captured Variables
Lambda Functions

Capture by copy and by reference may also be combined:
[x, & y, i, & j] ... // capture x, i by copy and y, j by reference

or
[=, & y, & j] ... // capture all by copy except y and j

Remark
When using “=”, it has to be first in the capture description.

An empty capture description will not capture any variable:
[] ... // do not capture any variable

Kriemann, »Introduction to Parallel Programming« 10

Captured Variables
Lambda Functions

The exact value of a captured variable when executing the lambda function
depends on how it is captured:
int i = 1, j = 2;
double x = 3, y = 4;

auto f1 = [x, y, i, j] () -> void { std::cout << i << j << x << y << std::endl; };
auto f2 = [=] () -> void { std::cout << i << j << x << y << std::endl; };
auto f3 = [& x, & y, & i, & j] () -> void { std::cout << i << j << x << y << std::endl; };
auto f4 = [&] () -> void { std::cout << i << j << x << y << std::endl; };
auto f5 = [x, & y, i, & j] () -> void { std::cout << i << j << x << y << std::endl; };
auto f6 = [=, & y, & j] () -> void { std::cout << i << j << x << y << std::endl; };

i = 5; y = 6;

f1(); f2(); f3(); f4(); f5(); f6();

The output is then:
1234
1234
5236
5236
1236
1236

Remark
Lambda functions have no explicitly nameable type. But it can be inferred by auto.

Kriemann, »Introduction to Parallel Programming« 11

Simplified Lambda Functions
Lambda Functions

The full lambda definition can be simplified to

[capture] (params) { body }

if the body contains a single return statement, from which the return type can
be automatically inferred:
auto f = [] (const double x) { return x∗x; };

If no return statement exists, the return type defaults to void:
auto f = [] (const double x) { compute_something(x); };

Similarly, if the lambda function has no parameters, it can be simplified to

[capture] -> ret { body }
e.g.
auto pi = [] -> double { return 355.0 / 113.0; };

Both simplifications can also be combined to

[capture] { body }
Kriemann, »Introduction to Parallel Programming« 12

Loops

Kriemann, »Introduction to Parallel Programming« 13

Simple Loops
Loops

The parallelisation of simple loops, e.g.
for (size_t i = 0; i < n; ++i) {

...
}

is provided by the TBB algorithm

template<typename index_t, typename func_t>
func_t parallel_for (index_t start,

index_t end,
const func_t & f);

Using parallel_for, the above loop translates into
parallel_for(0, n, [] (index_t i) { ... });

Alternatively, the loop body can be encapsulated by a named function:
void f (index_t i) {

...
}

parallel_for(0, n, f);

Kriemann, »Introduction to Parallel Programming« 14

Simple Loops
Loops

Example: Matrix Multiplication

Computing C = A ·B with A, B, C ∈ Rn×n in parallel using parallel_for:
parallel_for(0, n, // parallelise outer most loop

[n,&A,&B,&C] (const size_t i) { // capture A,B,C by reference
for (size_t j = 0; j < n; ++j) {
double f = 0;
for (size_t k = 0; k < n; ++k)

f += A(i,k)∗B(k,j);
C(i,j) = f;

}
}

);

The parallel speedup of the above implementation for n = 1024 is:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

outer most loop only: 11.26x 11.29x 186.05x

Kriemann, »Introduction to Parallel Programming« 15

Simple Loops
Loops

The parallel_for algorithm also accepts a step parameter:

template<typename index_t, typename func_t>
func_t parallel_for (index_t start,

index_t end,
index_t step,
const func_t & f);

which enables the parallelisation of loops of the form
for (size_t i = 0; i < n; i += step) {

...
}

Remark
The loop must not wrap around and the step value must be positive.

Kriemann, »Introduction to Parallel Programming« 16

Simple Loops
Loops

The parallel_for algorithm also accepts a step parameter:

template<typename index_t, typename func_t>
func_t parallel_for (index_t start,

index_t end,
index_t step,
const func_t & f);

which enables the parallelisation of loops of the form
for (size_t i = 0; i < n; i += step) {

...
}

Remark
The loop must not wrap around and the step value must be positive.

Kriemann, »Introduction to Parallel Programming« 16

Simple Loops
Loops

Using the above form of parallel_for, each iteration of the loop induces a
new task, i.e. a fine granular approach to loop parallelisation.

If the work per iteration is small, the management overhead may be too big for
efficient parallelisation.

For such cases, the generalised version of parallel_for can be used, which
uses ranges to specify the index set to operate on:

template< typename range_t, typename body_t >
func_t parallel_for (const range_t & range,

const body_t & body);

The body object may be a lambda function
[...] (const range_t & r) { ... }

or a standard C++ object with the following minimal interface:
struct body_t {
body_t (const Body &); // copy constructor
~body_t (); // destructor
void operator () (const range_t & r) const; // range based operator

};

Kriemann, »Introduction to Parallel Programming« 17

Range Concept
Simple Loops

TBB uses ranges to partition a given index set into sub sets for task definition.
For this, it recursively subdivides the index set, until a indivisible set is reached.
The constructed tasks are assigned to (or stolen from) the worker threads.

Each range in TBB has to implement a minimal interface to enable partitioning:
struct range_t {
range_t (const range_t &) // copy constructor
range_t (range_t & r, split) // split range into two sub ranges
~range_t (); // destructor

bool empty () const; // return true if range is empty
bool is_divisible () const; // return true if range can be partitioned into

// two sub ranges
};

The splitting constructor partitions the given range into two sub ranges, usually
of equal size, and updates the range parameter with one of the new sub ranges:
struct int_range_t {

int lb, ub; // lower and upper bound of interval [lb,ub)

int_range_t::int_range_t (int_range_t & r, split) {
int mid = (r.lb + r.ub) / 2;

lb = mid; ub = r.ub; // this becomes second sub interval
r.ub = mid; // r becomes first sub interval

}
};

Kriemann, »Introduction to Parallel Programming« 18

Range Concept
Simple Loops

TBB defines ranges for one, two and three dimensional indexsets.
template < typename value_t > blocked_range;

template < typename row_value_t,
typename col_value_t> blocked_range2d;

template < typename page_value_t,
typename row_value_t,
typename col_value_t> blocked_range3d;

For value_t, any integral or pointer datatype may be used. Furthermore,
standard STL random iterators, e.g. for std::vector, are possible.
blocked_range< size_t > r1(0, 100); // index set [0,100)
blocked_range2d< size_t > r2(0, 100, 0, 10); // index set [0,100) x [0,10)
blocked_range3d< size_t > r3(0, 100, 0, 20, 0, 5); // index set [0,100) x [0,20) x [0,5)

Range iteration is performed in the standard STL way using begin() and end() .
For the two and three dimensional ranges, the correspondinging sub ranges are
accessed using rows() and cols() and, for blocked3d_range via pages() :
for (auto i = r1.begin(); i != r1.end(); ++i) ...

for (auto i = r2.rows().begin(); i != r2.rows().end(); ++i)
for (auto j = r2.cols().begin(); j != r2.cols().end(); ++j)
...

for (auto k = r3.pages().begin(); k != r3.pages().end(); ++k)
for (auto i = r3.rows().begin(); i != r3.rows().end(); ++i)
for (auto j = r3.cols().begin(); j != r3.cols().end(); ++j)
...

Kriemann, »Introduction to Parallel Programming« 19

Range Concept
Simple Loops

Using ranges, the parallel loop
parallel_for(0, n, [] (index_t i) { ... });

can be rewritten as
parallel_for(blocked_range< size_t >(0, n),

[] (const blocked_range< size_t > & r) {
for (auto i = r.begin(); i != r.end(); ++i) {
...

} }
);

Example: Matrix Multiplication
With blocked_range2d, both outer loops can be parallelised:
parallel_for(blocked_range2d< size>t(0, n, 0, n),

[n,&A,&B,&C] (const blocked_range2d< size_t > & r) {
for (auto i = r.rows().begin(); i < r.rows().end(); ++i) {
for (auto j = r.cols().begin(); j < r.cols().end(); ++j) {

double f = 0;
for (size_t k = 0; k < n; ++k)
f += A(i,k)∗B(k,j);

C(i,j) = f;
} } });

This yields a speedup of: Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

both outer loops: 11.20x 11.29x 211.88x

Kriemann, »Introduction to Parallel Programming« 20

Range Concept
Simple Loops

Using ranges, the parallel loop
parallel_for(0, n, [] (index_t i) { ... });

can be rewritten as
parallel_for(blocked_range< size_t >(0, n),

[] (const blocked_range< size_t > & r) {
for (auto i = r.begin(); i != r.end(); ++i) {
...

} }
);

Example: Matrix Multiplication
With blocked_range2d, both outer loops can be parallelised:
parallel_for(blocked_range2d< size>t(0, n, 0, n),

[n,&A,&B,&C] (const blocked_range2d< size_t > & r) {
for (auto i = r.rows().begin(); i < r.rows().end(); ++i) {
for (auto j = r.cols().begin(); j < r.cols().end(); ++j) {

double f = 0;
for (size_t k = 0; k < n; ++k)
f += A(i,k)∗B(k,j);

C(i,j) = f;
} } });

This yields a speedup of: Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

both outer loops: 11.20x 11.29x 211.88x
Kriemann, »Introduction to Parallel Programming« 20

Range Concept
Simple Loops

Beside the lower and upper bound for each dimension, an optional grain size
may be specified, which defines the minimal chunk size for recursive partitioning,
which is one by default.
blocked_range (value_t lb, value_t ub, size_t grainsize);

blocked_range2d (value_t row_lb, value_t row_ub, size_t row_grainsize,
value_t col_lb, value_t col_ub, size_t col_grainsize);

blocked_range3d (value_t page_lb, value_t page_ub, size_t page_grainsize,
value_t row_lb, value_t row_ub, size_t row_grainsize,
value_t col_lb, value_t col_ub, size_t col_grainsize);

In the following example, the task borders for different grain sizes for a two
dimensional index set are shown. Hereby, the uneven one dimensional range sizes
are a result of the recursive sub division.

blocked_range2d< size_t > r1(0, 10, 2
0, 20 3);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0
1
2
3
4
5
6
7
8
9

blocked_range2d< size_t > r2(0, 10, 4
0, 20, 6);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0
1
2
3
4
5
6
7
8
9

Kriemann, »Introduction to Parallel Programming« 21

Range Concept
Simple Loops

For the computation xi = xi +√yi with x, y ∈ Rn, the parallel speedup
depending on the grain size on a 2-CPU Xeon E5-2640 is presented in the
following diagram:

1 10 100 1000
Grain size

2

4

6

8

10

12
S
p
e
e
d
u
p

For a very small grain size, management overhead clearly dominates the runtime,
preventing any speedup.

Kriemann, »Introduction to Parallel Programming« 22

Partitioners
Simple Loops

Ranges define a partition of an index set, e.g. into chunks of at most grain size.

However, a parallel loop starts with the whole index set and successively divides
it into smaller sub index sets, such that each thread will have some tasks to work
on.

This process is controlled by partitioners in TBB, of which the following are
provided:

auto_partitioner: divide range into sub ranges until all threads have
(almost) equal load,

affinity_partitioner: similar to auto_partitioner but tries to
maximise cache locality,

simple_partitioner: divides range until grain size is reached.

The partitioner is an optional argument to parallel_for:
parallel_for (start, end, func, partitioner);
parallel_for (range, body, partitioner);

e.g.
parallel_for(blocked_range< size_t >(0, n),

[] (const blocked_range< size_t > & r) { ... },
simple_partitioner()

);

Kriemann, »Introduction to Parallel Programming« 23

Partitioners
Simple Loops

By default, auto_partitioner is used. Since the sub division is stopped, when
all threads have enough work, the specified grain size is not neccessarily reached.
Therefore, even if the grain size is one, the efficiency will often not deteriorate.

In contrast to this, the simple_partitioner will always split ranges until the
the sub ranges are not larger than the grain size, hence, the latter needs to be
chosen appropriately .

auto_partitioner simple_partitioner

The affinity_partitioner may increase performance if several iterations are
performed for the same data set and the per task data fits in the local cache.

Kriemann, »Introduction to Parallel Programming« 24

Reductions
Loops

Parallel reduction operations are provided in TBB by the parallel_reduce
algorithm:
template< typename range_t, typename value_t,

typename func_t, typename reduce_t >
value_t parallel_reduce (const range_t & range,

const value_t & identity,
const func_t & func,
const reduce_t & reduce);

Here, func is the function accumulating values over a given range. It has to
implement
struct func_t {
value_t operator () (const range_t & r, const value_t & val);

};

where val specifies a start value for the local reduction.

The combination of locally computed values is implemented by reduce_t:
struct reduce_t {
value_t operator () (const value_t & x1, const value_t & x2);

};

Finally, identity denotes the identity with respect to the reduction operation.
Kriemann, »Introduction to Parallel Programming« 25

Reductions
Loops

For a standard reduction based on addition, the corresponding func_t
implementation could be
struct arraysum_t {

std::vector< double > & x; // array of coefficients to reduce

arraysum_t (std::vector< double > & ax) : x(ax) {} // constructor

double operator () (const blocked_range< size_t > & r, const double val) {
double s = val;
for (auto i = r.begin(); i != r.end(); ++i)
s += x[i];

return s;
}

};

Similarly, for reduce_t, one could use
struct plus_t {

double operator () (const double x1, const double x2) const {
return x1+x2;

}
};

Finally, the parallel reduction looks as
sum = parallel_reduce(blocked_range< size_t >(0, n, OPT_GRAIN_SIZE),

double(0),
arraysum_t(x),
plus_t());

Kriemann, »Introduction to Parallel Programming« 26

Reductions
Loops

The main advantage of TBB reductions over other implementations, e.g.
OpenMP, is that it is not restricted to elementary data types.

As an example, if the scalar values in the previous summation are replaced by
vectors in R3, the parallel reduction based on lambda functions is:
std::vector< Vector3 > vectors(n);
...
sum = parallel_reduce(blocked_range< size_t >(0, n, OPT_GRAIN_SIZE),

Vector3(0,0,0),

[&vectors](const blocked_range< size_t > & r,
const Vector3 & val) {

Vector3 v = val;
for (auto i = r.begin(); i != r.end(); ++i)
v += vectors[i];

return v;
},

std::plus< Vector3 >()
);

All that is needed here are operators += and + for objects of type Vector3.

Remark
The STL provides a wide variety of binary operations in the functional module, e.g.
plus, minus, multiplies, divides, etc..

Kriemann, »Introduction to Parallel Programming« 27

Reductions
Loops

Extending the previous example to matrices would result in many copy
operations, since each local reduction or combination would return a matrix
object.

To avoid such copies, TBB provides an imperative form of parallel reductions:

template< typename range_t, typename body_t >
value_t parallel_reduce (const range_t & range,

const body_t & body);

Here, body_t must implement the following interface:
struct body_t {
body_t (body_t & b, split); // splitting constructor
~body_t (); // destructor
void operator () (const range_t & r); // sub range accumulation
void join (const body_t & b); // combine parameter with local result

};

The splitting constructor is used by TBB to make copies of the body_t object
for different worker threads.

It may be executed concurrently with the sub range accumulation or the join
function. Hence, special protection for object local variables may be neccessary,
allthough this is usually not needed.

Kriemann, »Introduction to Parallel Programming« 28

Reductions
Loops

Using the imperative form of parallel_reduce, the matrix sum
∑

i
Mi with

Mi ∈ Rm×m, 0 ≤ i < n, is computed via:
struct MatrixSum {

std::vector< Matrix > & matrices;
Matrix loc_sum;

MatrixSum (MatrixSum & ms, split)
: matrices(ms.matrices), loc_sum(ZERO_MATRIX)

{}

void operator () (const blocked_range< size_t > & r) {
Matrix M(ZERO_MATRIX);

for (auto i = r.begin(); i != r.end(); ++i)
M += matrices[i];

loc_sum += M;
}

void join (MatrixSum & M) {
loc_sum += M.loc_sum;

}
};

Here, no additional copy is performed, since only local variables are updated and
not returned from the involved functions.

The actual parallel reduction then looks as
std::vector< Matrix > matrices(n);
...
MatrixSum sum(matrices);
parallel_reduce(blocked_range< size_t >(0, n, OPT_GRAIN_SIZE, sum);

Kriemann, »Introduction to Parallel Programming« 29

Reductions
Loops

Example: Matrix Multiplication
Parallelisation of C = A ·B may be extended to the innermost loop, where a
reduction is performed for the dot product:
parallel_for(

blocked_range2d< size_t >(0, n, OPT_GRAIN_SIZE,
0, n, OPT_GRAIN_SIZE),

[n,&A,&B,&C] (const blocked_range2d< size_t > & r) {
for (auto i = r.rows().begin(); i < r.rows().end(); ++i) {
for (auto j = r.cols().begin(); j < r.cols().end(); ++j) {
C(i,j) = parallel_reduce(blocked_range< size_t >(0, n, OPT_GRAIN_SIZE),

double(0),
[i,j,&A,&B,&C](const blocked_range< size_t > & ri,

double val) {
double f = val;
for (auto k = ri.begin(); k != ri.end(); ++k)
f += A(i,k)∗B(k,j);

return f;
},
std::plus< double >());

} } });

Comparing the previous approaches for n = 1024 and a grain size of 64 we have:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

outer most loop only: 10.41x 9.80x 16.16x
both outer loops: 11.31x 11.00x 121.47x
outer loops plus reduction: 10.08x 10.25x 167.39x

Kriemann, »Introduction to Parallel Programming« 30

Deterministic Reductions
Reductions

By default, the splits and joins of parallel reduction operations may be performed
in any order. Since for the reduction itself, associativity is assumed, this poses
no problem in theory .

In practise however, the results of parallel reductions may differ between different
runs.

The enforce the same order of splits and joins, TBB provides a deterministic
variant of parallel_reduce:

template< typename range_t, typename value_t,
typename func_t, typename reduce_t >

value_t parallel_deterministic_reduce (const range_t & range,
const value_t & identity,
const func_t & func,
const reduce_t & reduce);

template< typename range_t, typename body_t >
value_t parallel_deterministic_reduce (const range_t & range,

const body_t & body);

The definition of the arguments is identical to the standard parallel reduction.

Kriemann, »Introduction to Parallel Programming« 31

Deterministic Reductions
Reductions

It is importent to note, that the deterministic computation does not reproduce
sequential computation. As an example, computing

n∑
i=1

(−1)i+1

i

for n = 10000000 sequentially via
for (auto v : x) sum += v;

gives
6.9314713055990318e-01

If the same reduction is computed with
parallel_deterministic_reduce(blocked_range< size_t >(0, n), double(0),

[&x](const blocked_range< size_t > & r, double s) { ... }
std::plus< double >());

the output is
6.9314713055994759e-01

Furthermore, the output is dependent on the grain size.
Kriemann, »Introduction to Parallel Programming« 32

General Loops
Loops

For all previous loops the loop index set was known before parallelisation.
Furthermore, a random access was implicitly required to access elements of
individual tasks, e.g. vector coefficients to work on.

If this is not the case, parallel_for can not be used for loop parallelisation.

Instead, TBB provides the parallel_do algorithm:

template < typename iterator, typename body_t >
void parallel_do (iterator first,

iterator last,
body_t body);

The iterator type for parallel_do only has to provide a minimal function set,
e.g. construction and increment. Hence, even std::list may be used.

If the iteration space is fixed, e.g. but still restricted to std::list, body_t has
to provide only evaluation per set item:
struct body_t {
void operator () ([const] item_t & item) const; // "const" depends on iterator

};

Kriemann, »Introduction to Parallel Programming« 33

General Loops
Loops

Fetching new tasks from the iterator in parallel_do is considered a critical
section, hence performed strictly sequential.

Therefore, the tasks should be sufficiently large to not let management overhead
dominate.

As an example, for a list of double values the following computation was
performed on a 2-CPU Xeon E5-2640 with an increasing number of iteration:
parallel_do(x.begin(), x.end(), [](double & v) {

for (int it = 0; it < N_ITER; ++it)
v = std::sin(v);

});

The speedup depending on the per task
work is show in the left diagram.
Especially for tasks with little work,
parallel_do is not usable for an
efficient parallelisation.

The main reason for the inefficiency is
the iterator of std::list. Using
random iterators, the management
overhead is much smaller.

1 4 16 64 256 1024
#iterations

1/20

1/10

1/5

1

5

10

20

S
pe

ed
up

sequential
parallel do

Kriemann, »Introduction to Parallel Programming« 34

General Loops
Loops

Fetching new tasks from the iterator in parallel_do is considered a critical
section, hence performed strictly sequential.

Therefore, the tasks should be sufficiently large to not let management overhead
dominate.

As an example, for a list of double values the following computation was
performed on a 2-CPU Xeon E5-2640 with an increasing number of iteration:
parallel_do(x.begin(), x.end(), [](double & v) {

for (int it = 0; it < N_ITER; ++it)
v = std::sin(v);

});

The speedup depending on the per task
work is show in the left diagram.
Especially for tasks with little work,
parallel_do is not usable for an
efficient parallelisation.
The main reason for the inefficiency is
the iterator of std::list. Using
random iterators, the management
overhead is much smaller.

1 4 16 64 256 1024
#iterations

1/20

1/10

1/5

1

5

10

20

S
pe

ed
up

sequential
parallel do (list)
parallel do (deque)

Kriemann, »Introduction to Parallel Programming« 34

General Loops
Loops

Fetching new tasks from the iterator in parallel_do is considered a critical
section, hence performed strictly sequential.

Therefore, the tasks should be sufficiently large to not let management overhead
dominate.

As an example, for a list of double values the following computation was
performed on a 2-CPU Xeon E5-2640 with an increasing number of iteration:
parallel_do(x.begin(), x.end(), [](double & v) {

for (int it = 0; it < N_ITER; ++it)
v = std::sin(v);

});

The speedup depending on the per task
work is show in the left diagram.
Especially for tasks with little work,
parallel_do is not usable for an
efficient parallelisation.
The main reason for the inefficiency is
the iterator of std::list. Using
random iterators, the management
overhead is much smaller.

1 4 16 64 256 1024
#iterations

1/20

1/10

1/5

1

5

10

20

S
pe

ed
up

sequential
parallel do (list)
parallel do (deque)
parallel do (vector)

Kriemann, »Introduction to Parallel Programming« 34

General Loops
Loops

The parallel_do algorithm also permits new tasks to be added to the task set
during execution.

For this, the evaluation function of the body_t object has to accept an
additional argument:
struct body_t {
void operator () ([const] item_t & item,

parallel_do_feeder< item_t > & feeder) const;
};

The parallel_do_feeder object provides a function add to extend the task
set:
parallel_do(x.begin(), x.end(),

[](item_t & item,
parallel_do_feeder< item_t > & feeder) {
handle(item);

if (more_work_available())
feeder.add(more_work());

});

Kriemann, »Introduction to Parallel Programming« 35

Pipeline
Loops

For a set of input items, to which functions f1, . . . , fm are successively applied,
e.g. fm(. . . f3(f2(f1(·)))), the pipeline algorithm model may be used:

input f1 f2 f3 · · · fm output

This model is provided by TBB by the parallel_pipeline algorithm, while
each stage in the pipeline corresponds to a filter :
void
parallel_pipeline (size_t max_parallel,

const filter_t< void, void > & filter_chain);

The filter chain itself consists of concatenated filters and can be constructed
using make_filter :
make_filter< void, outinp_t >(modei, input) & // feed pipeline
make_filter< input1_t, output1_t >(mode1, func1) & // apply f_1
make_filter< input2_t, output2_t >(mode2, func2) & // apply f_2
...
make_filter< inputm_t, outputm_t >(modem, funcm) & // apply f_m
make_filter< inpout_t, void >(modeo, output)); // take items out

The output type of filter j must be identical to the input type of filter j + 1. The
input type of the first and the output type of the last filter have to be void .

Kriemann, »Introduction to Parallel Programming« 36

Pipeline
Loops

The mode of a filter may be one of

filter::serial_in_order applies function to items one at a time
and always in the same order,

filter::serial_out_of_order applies function to items one at a time in
no particular order,

filter::parallel applies function to several items in parallel.

The maximal degree of concurrency for a filter is defined by the value of
max_parallel. It prevents parallel filters to accumulate an arbitrary number of
items, if a following serial filter can not handle the input stream fast enough.

Except for the first function, all function objects func have to implement
output_t func::operator () (input_t item);

with output_t and input_t being the input and output types of the
corresponding filter.

Kriemann, »Introduction to Parallel Programming« 37

Pipeline
Loops

As the first function object feeds the pipeline, it also controls the end of the
pipeline via a flow_control object:
outinp_t func::operator (flow_control & fc);

If all input items are processed, fc.stop() has to be called. The return value of
the function is afterwards not used:
output0_t func::operator (flow_control & fc) {

if (input.empty()) {
fc.stop(); // signal pipeline stop
return output0_t(0); // return dummy value

} else {
return next(input);

} }

Kriemann, »Introduction to Parallel Programming« 38

Pipeline
Loops

For the introductory setting, the full source using lambda functions is:
parallel_pipeline(

max_parallel,

// insert items into pipeline
make_filter< void, double >(
filter::serial_in_order, [&input] (flow_control & fc) {
if (input.empty()) {
fc.stop();
return 0.0;

} else {
double v = ∗ (input.begin());
input.pop_front();
return v;

} }
)
&
// apply f1 ... fm in parallel
make_filter< double, double >(filter::parallel, [] (double v) { return f1(v); })
&
make_filter< double, double >(filter::parallel, [] (double v) { return f2(v); })
&
make_filter< double, double >(filter::parallel, [] (double v) { return f3(v); })
&
...
&
make_filter< double, double >(filter::parallel, [] (double v) { return fm(v); })
&
// finish pipeline
make_filter< double, void >(
filter::serial_in_order, [&output] (const double v) {
output.push_back(v);

}
)

);

Kriemann, »Introduction to Parallel Programming« 39

Pipeline
Loops

Filters may also be created in advance using the filter_t class:
filter_t< void, double > fin(filter::serial_in_order,

[&input] (flow_control & fc) {
if (input.empty()) {
fc.stop();
return 0.0;

} else {
double v = ∗ (input.begin());
input.pop_front();
return v;

} });
filter_t< double, double > ff1(filter::parallel, [] (double v) { return f1(v); });
filter_t< double, double > ff2(filter::parallel, [] (double v) { return f2(v); });
filter_t< double, double > ff3(filter::parallel, [] (double v) { return f3(v); });
filter_t< double, double > ff4(filter::parallel, [] (double v) { return f4(v); });
filter_t< double, void > fout(filter::serial_in_order,

[&output] (const double v) {
output.push_back(v);

});
filter_t< void, void > f = fin & ff1 & ff2 & ff3 & ff4 & fout; // create pipeline

parallel_pipeline(max_parallel, f);

This also allows to reuse filters in a pipeline:
filter_t< void, void > f = fin & ff1 & ff2 & ff3 & ff4 & ff4 & fout;

Kriemann, »Introduction to Parallel Programming« 40

Non-Linear Pipelines
Pipeline

Pipelines in TBB have to be linear, e.g.

f1 f2 f3 • • • fm

Multiple inputs or outputs are not supported, e.g.

g1

g2

g3

g4

g5

Instead, such pipelines have to be linearised :

g1

g2

g3

g4

g5

Kriemann, »Introduction to Parallel Programming« 41

Pipeline Throughput
Pipeline

The rate at which items are processed by a pipeline depends on several
parameters:

• the value of max_parallel,
• slowest filter,
• granularity.

Choosing max_parallel too small may prohibit using all available parallel
resources. On the other hand, a value too large may induce too much overhead,
e.g. memory.

In any case, the filter with the least throughput rate will determine the
throughput of the whole pipeline. This especially applies to serial or IO-bound
filter.

Finally, having many filters in the pipeline executing only little work will create
more management overhead. Hence, each function should have a reasonable
runtime for efficient parallelisation.

Kriemann, »Introduction to Parallel Programming« 42

Pipeline Class
Pipeline

Beside the parallel_pipeline algorithm, also a pipeline class exists in TBB:

class pipeline {
public:

void add_filter (filter & f); // add filter to pipeline
void run (size_t max_parallel); // execute pipeline
void clear(); // remove all filters

};

However, in contrast to the filter_t class, filter is not type safe. New filters
have to be derived from filter and need to overload the () operator:
class my_filter : public filter {
void ∗ operator () (void ∗ item);

};

Input items have to be cast to the actual type, while ensuring that all items have
a lifetime equal to the pipeline itself.

The end of the input stream is signaled by a NULL return value of the first filter
and the output of the last filter is ignored.

Kriemann, »Introduction to Parallel Programming« 43

Task Groups

Kriemann, »Introduction to Parallel Programming« 44

Task Groups
TBB provides a high-level interface to tasks, which allows task definition by
using standard C++ function objects.

Each of these tasks belongs to a task group implemented by the class
task_group :

class task_group {
template< typename func_t > void run (const func_t & f);
task_group_status void wait ();
template< typename func_t > void run_and_wait (const func_t & f);

};

Spawning a task in a task group is performed using the function run(), whereas
wait() will block until all tasks in the task group have finished execution:
task_group g;

g.run([] { ... });
g.run([] { ... });

g.wait();

Spawning the last task in a group and waiting for all tasks is combined in
run_and_wait().

Kriemann, »Introduction to Parallel Programming« 45

Task Groups
Beside spawning and waiting, tasks in a task group may be cancelled via
void task_group::cancel ();

Tasks, which are not yet running will not be scheduled for execution if the group
has been cancelled. However, if a task is already running, cancellation has no
effect.

The return value of the function wait() gives information about the completion
and cancellation status of the task group using the task_group_status enum:

not_complete: group was not cancelled and there are still tasks which have
not completed,

complete: group was not cancelled and all tasks completed,
canceled: group was cancelled.

The current cancellation status can also be retrieved using the function
void task_group::is_canceling ();

Remark
If an exception is thrown within a task, the task group is cancelled.

Kriemann, »Introduction to Parallel Programming« 46

Task Groups
Example: Dot Product
For computing the dot product 〈x, y〉 with x, y ∈ Rn, a recursive algorithm is
chosen. Each recursive call corresponds to a new task, belonging to a new task
group:
double parallel_dot (const std::vector< double > & x,

const std::vector< double > & y,
const size_t lb, const size_t ub) {

if (ub− lb < MIN_SIZE) {
return std::inner_product(& x[lb], & x[ub], & y[lb], 0.0);

} else {
task_group g;
double res1 = 0;
double res2 = 0;

g.run([ub,lb,&res1,&x,&y] { res1 = parallel_dot(x, y, lb, (ub−lb)/2); });
g.run([ub,lb,&res2,&x,&y] { res2 = parallel_dot(x, y, (ub−lb)/2, ub); });
g.wait();

return res1 + res2;
}

}

Kriemann, »Introduction to Parallel Programming« 47

Tasks

Kriemann, »Introduction to Parallel Programming« 48

The task Class
Tasks

The fundamental building block of the low-level task based programming in TBB
is the task class and its execute function:

class task {
public:

virtual task ∗ execute() = 0;
...

};

All user tasks have to be derived from task and overload execute.

Each task has an optional parent and a reference counter associated with it,
accessible via

task ∗ task::parent () const;
void task::set_parent (task ∗ p);

void task::set_ref_count (int count);
void task::increment_ref_count ();
int task::decrement_ref_count ();

The reference counter of a task t contains the number of tasks to which t is the
parent. Modifications of a reference counter are always atomic.

A root task has no parent and a reference counter of 0. Furthermore, if the
parent field of a task is set, this task is a child task of the corresponding parent.

Kriemann, »Introduction to Parallel Programming« 49

Allocation
Tasks

Tasks in TBB provide special allocation routines for an efficient management of
tasks.
static proxy1_t allocate_root ();
proxy2_t allocate_child ();
static proxy3_t allocate_additional_child_of (task & t);

Remark
The allocation function return internal proxy objects, which handle the actual allocation.

Depending on the allocation routine, the parent and the reference counter of the
new (or calling) task is set:

parent ref. counter

allocate_root() nullptr 0
t->allocate_child() t 0
allocate_additional_child_of(t) t 0, t.refcount++

All tasks must be allocated by these functions. Otherwise, the results of the
allocation is undefined.

Kriemann, »Introduction to Parallel Programming« 50

Synchronisation
Tasks

TBB provides several methods to spawn new tasks and synchronise with the end
of tasks, depending on how the tasks were allocated.

For a parent task p, a child task t is put into the thread-local work set via
static void task::spawn (task & t);

For further synchronisation to work, the value of the reference counter of p is
important. Before spawning any task, it has to be set to the number of child
tasks.

After spawning, p can wait for all child tasks to finish by calling
void task::wait_for_all ();

For this function, an additional reference is needed in p, because
wait_for_all() will execute tasks in the work set, until the reference counter
of p is 1. Afterwards, it decreases the reference counter of p to 0 and returns.

The reference counter of p is decremented by using the parent variable in child
tasks after execute() has finished. If it becomes 0, the parent is also put in the
work set by TBB.

Kriemann, »Introduction to Parallel Programming« 51

Synchronisation
Tasks

Spawning the last and waiting for all child tasks can be combined by
void task::spawn_and_wait_for_all (task & t);

Remark
The task spawned by spawn_and_wait_for_all() is guaranteed to be executed by the
current thread.

For root tasks a special spawn routine is provided:
static void task::spawn_root_and_wait (task & t);

Destruction
Tasks in the work set are usually automatically destroyed upon fininshing
execution. The task memory is afterwards recycled for future allocations.
If this is not the case, e.g. due to special handling of the reference counter, tasks
should be explicitly destroyed using
static void task::destroy (task & t);

The reference counter of t must be 0. If a parent of t exists, its reference
counter is decreased.

Kriemann, »Introduction to Parallel Programming« 52

Example
Tasks

Compute 〈x, y〉 recursively, while each recursive call forms a new task:
class dot_task_t : public task {
public:

const std::vector< double > & x, & y;
const size_t lb, ub; // interval [lb,ub)
double & res; // holds locally computed result

task ∗ execute () {
if (ub - lb < MIN_SIZE) {
res = std::inner_product(& x[lb], & x[ub], & y[lb], 0.0);

} else {
double res1 = 0;
double res2 = 0;
dot_task_t & child1 = ∗ new (allocate_child()) dot_task_t(x, y, lb, (ub+lb)/2, res1);
dot_task_t & child2 = ∗ new (allocate_child()) dot_task_t(x, y, (ub+lb)/2, ub, res2);

set_ref_count(3);
spawn(child2);
spawn_and_wait_for_all(child1);

res = res1 + res2;
return nullptr;

} } };

double parallel_dot (const std::vector< double > & x, const std::vector< double > & y) {
double res = 0;
dot_task_t & root = ∗ new (task::allocate_root()) dot_task_t(x, y, 0, x.size(), res);

task::spawn_root_and_wait(root);
return res;

}

On an Intel XeonPhi 5110P, the speedup of parallel_dot() for n = 108 is
12.63x compared to 2.56x for parallel_reduce().

Kriemann, »Introduction to Parallel Programming« 53

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0

∑3
0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4

∑1
0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5

x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4∑1

0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5

x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4

∑1
0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4

∑1
0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7

x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Scheduling
Tasks

The task graph for the dot-product example with n = 8 and MIN_SIZE = 1 is:

x0y0 x1y1 x2y2 x3y3 x4y4 x5y5 x6y6 x7y7

∑1
0

∑3
2

∑5
4

∑7
6

∑3
0

∑7
4

∑7
0

∑7
0∑3

0

∑7
4

∑7
4

∑1
0

∑5
4

∑3
2

∑7
6

x0y0 x4y4x1y1 x5y5x1y1 x5y5

∑3
2

∑7
6

x2y2 x6y6x3y3 x7y7

x3y3 x7y7

The computation starts with the
∑7

0 task.

The task scheduler of TBB uses a mixed DFS/BFS scheduling strategy to
optimise cache locality and parallel execution:

• tasks per thread are executed via DFS (preserves cache locality),
• task stealing follows a BFS strategy (increases parallel degree)

Some methods are provided by TBB to influence or optimise task scheduling.
Kriemann, »Introduction to Parallel Programming« 54

Continuation Passing
Scheduling

A thread, which executes a task calling spawn_and_wait_for_all(), will
executes other tasks while the child tasks are running. If the parent task may
finally proceed, the corresponding thread could be busy, preventing immediate
execution of the parent task.

This can be overcome by using a continuation task, i.e. a separate task which
continues execution after all child tasks of the original parent task have finished:
task ∗ dot_task_t::execute () {

if (ub - lb < MIN_SIZE) { ... }
else {
cont_t & cont = ∗ new (allocate_continuation()) cont_t(res);
task & child1 = ∗ new (cont.allocate_child()) dot_task_t(x, y, lb, (ub+lb)/2, cont.res1);
task & child2 = ∗ new (cont.allocate_child()) dot_task_t(x, y, (ub+lb)/2, ub, cont.res2);

cont.set_ref_count(2);
spawn(child2);
spawn(child1);
return nullptr;

} }

The child tasks will have the continuation task as their parent. As its reference
counter is 2, it is scheduled immediatly after the last child finishes. If the current
thread is busy, another thread may steal the continuation task and execute it.

Remark
Using a continuation task for the dot-product, the speedup increases to 23.93x.

Kriemann, »Introduction to Parallel Programming« 55

Scheduler Bypass
Scheduling

Up to now, the return value of execute() was always nullptr.

It can also be a pointer to a task, which is then chosen as the next task to be
executed by the current thread.
task ∗ dot_task_t::execute () {

if (ub - lb < MIN_SIZE) { ... }
else {
cont_t & cont = ∗ new (allocate_continuation()) cont_t(res);
task & child1 = ∗ new (cont.allocate_child()) dot_task_t(x, y, lb, (ub+lb)/2, cont.res1);
task & child2 = ∗ new (cont.allocate_child()) dot_task_t(x, y, (ub+lb)/2, ub, cont.res2);

cont.set_ref_count(2);
spawn(child2);

return & child1;
} }

Before, the child1 task was put in the work set of the current thread, and taken
out after execute() has finished.

Both operations are eliminated by handing child1 directly to the task scheduler.

Remark
For the dot-product computation, the speedup increases to 29.03x, when bypassing the
scheduler.

Kriemann, »Introduction to Parallel Programming« 56

Recycling
Scheduling

Bypassing the scheduling process can be combined with bypassing task
allocation and deallocation.
task ∗ dot_task_t::execute () {

if (ub - lb < MIN_SIZE) { ... }
else {
cont_t & cont = ∗ new (allocate_continuation()) cont_t(res);
task & child2 = ∗ new (cont.allocate_child()) dot_task_t(x, y, (ub+lb)/2, ub, cont.res2);

recycle_as_child_of(cont);
ub = (ub+lb)/2;
res = cont.res1;

cont.set_ref_count(2);
spawn(child2);

return this;
} }

The current task t is updated with the data of child1. Furthermore,
void task::recycle_as_child_of(task & new_parent);

will set the continuation task of t as its new parent.

Finally, the current task is reexecuted immediately by returning a pointer to it.

Remark
If the parent task is recycled as child during dot-product computation, the speedup
increases to 31.70x.

Kriemann, »Introduction to Parallel Programming« 57

Recycling
Scheduling

Recycling a parent task as a child task is especially efficient, if the child can
reuse data from the parent.

If on the other hand, a continuation task may reuse data, a task can also be
recycled as its own continuation via
void task::recycle_as_continuation ();

A potential race condition exists, if all child tasks of a recycled task t have
finished, at which point t is scheduled to be executed again.

If t has not finished its own execute() function, it is run in parallel. As this may
lead to various side effects, TBB requires that such situations must not occur.

One way to prevent this execution overlap is to not spawn one of the child tasks
but return it from execute().

Another way is to set the reference count of the continuation task to k + 1
where k is the number of child tasks and use
void task::recycle_as_safe_continuation ();

which avoids the race condition.

Kriemann, »Introduction to Parallel Programming« 58

Shared Queue
Scheduling

Each worker thread in TBB has its local work set of tasks. If not using scheduler
bypass or when the last child of a parent task finished, the thread will look first
at this set for a new task to execute.

TBB also has a shared set for all threads, from which it will take tasks if the
thread local set is empty. Only if this shared set is also empty, it will try to steal
tasks from other sets.

New tasks may be explicitly put into the shared task set via
static void task::enqueue (task & t);

In contrast to the thread local work set, which is handled in a last-in first-out
order, the shared set is accessed (roughly) in first-in first-out order.

This behaviour for the shared set ensures some fairness for task execution, i.e.
eventually the enqueued task will be executed. Tasks in the thread-local set may
not be scheduled until another task explicitly waits for them.

Furthermore, even if the number of worker threads is zero, a thread is started to
handle tasks in the shared set.

Kriemann, »Introduction to Parallel Programming« 59

Affinity
Scheduling

Thread affinity and, assuming a processor bound thread, also cache affinity for
tasks is supported by TBB through a set of task functions.

The affinity id of an executed task is automatically send to the task via
virtual void task::note_affinity (affinity_id id);

By overloading this function in a user defined task, the affinity id can be
recorded and set for a later spawned task using
void task::set_affinity (affinity_id id);

The task scheduler will afterwards use the thread with the same id to execute
the task. For this, the affinity id has to be set before the task is spawned:
task & child = ∗ new(allocate_child()) child_task_t(...);

child.set_affinity(my_id);
spawn(child);

Access to the current affinity id of a task is provided with
affinity_id task::affinity () const;

Remark
Variables of type affinity_id must default to 0 or hold values from note_affinity().

Kriemann, »Introduction to Parallel Programming« 60

Priority
Scheduling

For tasks in the shared queue a priority may be set as an optional argument to
enqueue:
static void task::enqueue (task & t,

priority_t p);

TBB supports three different levels of priority:

• priority_high,
• priority_normal,
• priority_low.

Tasks of a higher priority will be first taken out of the shared queue and
scheduled for execution.

The priority of the task is fixed when calling enqueue(), i.e. can not be changed
afterwards.

Remark
Spawned tasks will have the priority of their task group (see below).

Kriemann, »Introduction to Parallel Programming« 61

Task Groups
Tasks

All tasks are part of a task group, represented by objects of type
task_group_context.

Each creation of an task_scheduler_init, e.g. during explicit TBB
initialisation, also creates an implicit task group object. All tasks spawned during
the lifetime of that object, automatically belong to this task group:
{

task_scheduler_init tsi1(4); // task group 1
spawn_root_and_wait(...);

{
task_scheduler_init tsi2(8); // task group 2
spawn_root_and_wait(...);

}
}

{
task_scheduler_init tsi3(2); // task group 3
spawn_root_and_wait(...);

}

All task groups in a process form a forest of trees, i.e. multiple root task groups
may exist, each having various sub groups.

The hierarchy defined by the tree also determines certain properties of the task
groups, e.g. for cancellation or priority.

Kriemann, »Introduction to Parallel Programming« 62

Task Groups
Tasks

A root task may also be explicitly assigned to a task group by providing the
task_group_context object during task allocation:
task_group_context g;
task & t = ∗ new(task::allocate_root(g)) my_task_t(...);

All child tasks allocated with task::alocate_child() will automatically
belong to the same task group as the parent task.

Changing the task group of a task can be done using
void task::change_group (task_group_context & g);

The task group of a task is accessed via
task_group_context ∗ task::group ();

Kriemann, »Introduction to Parallel Programming« 63

Cancellation
Task Groups

All tasks in a task group and of all sub groups can be cancelled using
bool task::cancel_group_execution ();

Tasks already running are not directly affected by this. However, they may query
the current cancellation status via
bool task::is_cancelled ();

and stop further execution, e.g.:
task ∗ execute () {

while (! is_cancelled()) {
proceed_computation();

}
}

All other tasks, i.e. tasks still waiting for execution, will not call execute() after
a cancellation request was issued.

If the task group already received a cancellation request, the return value of
cancel_group_execution() is false.

Remark
Throwing an exception within a task will also cancel further execution within the
corresponding task group.

Kriemann, »Introduction to Parallel Programming« 64

Priority
Task Groups

Associated with a task group is a priority level of the same type and values as for
tasks in the shared queue, i.e. either priority_high, priority_normal or
priority_low.

The priority of a task group affects all tasks in the group and in all sub groups.
Tasks in a task group of a higher priority will be executed before tasks in group
with a lower priority.

To set the priority of a task group either use
void task_group_context::set_priority (priority_t p);

or
void task::set_group_priority (priority_t p);

Similarly, the priority of a task group may be accessed using one of
priority_t task_group_context::priority ();
priority_t task::group_priority ();

In contrast to the priority of an enqueue’d task, the priority of task groups may
be changed at any time. However the effect may not be immediate, e.g. tasks
with a lower priority may still be scheduled first.

Kriemann, »Introduction to Parallel Programming« 65

Task Lists
Tasks

Spawning several tasks can also be combined using the TBB type task_list :
static void spawn (task_list & list);

void spawn_and_wait_for_all (task_list & list);
static void spawn_root_and_wait (task_list & list);

The class task_list supports basic STL container functions:
class task_list {
public:
bool empty () const; // return true if empty
void push_back (task & task); // insert task at end of list
task & pop_front (); // remove and return first task in list
void clear (); // remove all tasks from list

};

Spawning task lists may be more efficient than spawning each task separatly:
task_list list;

set_ref_count(nchildren + 1);
for (int i = 0; i < nchildren; ++i)

list.push_back(∗ new(allocate_child()) child_task_t(...);

spawn_and_wait_for_all(list);

Remark
Recursive task spawning should be prefered over long task lists.

Kriemann, »Introduction to Parallel Programming« 66

DAG Computations
Tasks

Up to now, task creation was coupled with task spawning due to recursive
parallelism, which also reflected in the relation between parent and child tasks.

The task concept can also be viewed in terms of successors and predeccesors,
where a successor task is spawned after a predeccesor task has finished.

This relation can be expressed in terms of a graph, where nodes correspond to
tasks and directed edges to dependencies between them. Since no cyclic
dependencies may exists, such tasks are directed acyclic graphs or DAGs.

For the block-wise LU factorisation of a dense
matrix A ∈ Rn×n the incoming and outgoing
dependencies for a single matrix block are
shown to the right.
Incoming dependencies are due to needed
matrix updates (blue) and the diagonal
factorisation (red). Outgoing dependencies
are because of matrix updates to blocks below
(green).

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Kriemann, »Introduction to Parallel Programming« 67

DAG Computations
Tasks

Since several incoming dependencies exist, pre-allocation of tasks is of advantage.
Here, the reference counter may be set according to the degree of incoming edges
in the DAG. After each predecessor has finished, it can decrement the reference
counter of all successors. If this reaches zero, the task is scheduled for execution.

For the block-wise LU factorisation, matrix block Aij has 2 ·min(i, j)
dependencies due to matrix updates. In addition, off-diagonal blocks depend on
the factorisation of the diagonal block.

This leads to the following implementation, where for each matrix block a task is
pre-allocated, either for factorisation or matrix solves, and initialised with the
corresponding number of dependencies:
std::vector< std::vector< task ∗ > > tasks;

for (size_t i = 0; i < b; ++i) {
// factorise diagonal block
tasks[i][i] = new(task::allocate_root()) fac_task_t(A, i, tasks, mutexes);
tasks[i][i]->set_ref_count(2∗i);

// solve offdiagonal blocks
for (size_t j = i+1; j < b; ++j) {
tasks[i][j] = new(task::allocate_root()) solve_lower_task_t(A, i, j, tasks, mutexes);
tasks[i][j]->set_ref_count(1 + 2∗i);

tasks[j][i] = new(task::allocate_root()) solve_upper_task_t(A, j, i, tasks, mutexes);
tasks[j][i]->set_ref_count(1 + 2∗i);

} }

Kriemann, »Introduction to Parallel Programming« 68

DAG Computations
Tasks

The implementation of a factorisation task consists of the computation of all
updates, the actual point-wise factorisation and spawning successor tasks:
class fac_task_t : public task {
private:

...
task_matrix_t & tasks;

public:
...
task ∗ execute () {
const size_t b = A.n/BLOCK_SIZE;
Matrix A_ii(BLOCK_SIZE);

// spawn update tasks
spawn_updates(A, this, i, i, i);

// factorise
load_block(A, A_ii, i, i);
lu(A_ii);
store_block(A, A_ii, i, i);

// spawn tasks below and to the right
for (size_t k = i+1; k < b; ++k) {
if (tasks[i][k]->decrement_ref_count() == 0) spawn(∗ tasks[i][k]);
if (tasks[k][i]->decrement_ref_count() == 0) spawn(∗ tasks[k][i]);

}

return nullptr;
} };

Tasks for matrix solves are similar, e.g. first apply updates, then perform matrix
solve and finally spawn successors.

Kriemann, »Introduction to Parallel Programming« 69

DAG Computations
Tasks

The function spawn_updates() spawns tasks for all matrix updates

Aij = Aij −
`−1∑
k=0

LikUkj

with ` = min(i, j).

In contrast to factorisation and solve tasks, update tasks are created and
spawned when needed:

void spawn_updates (Matrix & A, task ∗ t
size_t i, size_t j, size_t l) {

t->set_ref_count(l+1);

// spawn updates for Aij = Aij − Σ0≤k<`LikUkj

for (size_t k = 0; k < l; ++k)
t->spawn(∗ new(t->allocate_child())

update_task_t(A, i, j, k));

t->wait_for_all();
}

class update_task_t : public task {
...
task ∗ execute () {
Matrix U_sub(BLOCK_SIZE);
Matrix L_sub(BLOCK_SIZE);
Matrix A_sub(BLOCK_SIZE);

load_block(A, L_sub, i, k);
load_block(A, U_sub, k, j);
load_block(A, A_sub, i, j);

multiply_sub(L_sub, U_sub, A_sub);

return nullptr;
} };

Remark
Updating a matrix block represents a critical section (see below).

Kriemann, »Introduction to Parallel Programming« 70

DAG Computations
Tasks

The function spawn_updates() spawns tasks for all matrix updates

Aij = Aij −
`−1∑
k=0

LikUkj

with ` = min(i, j).

In contrast to factorisation and solve tasks, update tasks are created and
spawned when needed:

void spawn_updates (Matrix & A, task ∗ t
size_t i, size_t j, size_t l) {

t->set_ref_count(l+1);

// spawn updates for Aij = Aij − Σ0≤k<`LikUkj

for (size_t k = 0; k < l; ++k)
t->spawn(∗ new(t->allocate_child())

update_task_t(A, i, j, k));

t->wait_for_all();
}

class update_task_t : public task {
...
task ∗ execute () {
Matrix U_sub(BLOCK_SIZE);
Matrix L_sub(BLOCK_SIZE);
Matrix A_sub(BLOCK_SIZE);

load_block(A, L_sub, i, k);
load_block(A, U_sub, k, j);
load_block(A, A_sub, i, j);

multiply_sub(L_sub, U_sub, A_sub);

return nullptr;
} };

Remark
Updating a matrix block represents a critical section (see below).

Kriemann, »Introduction to Parallel Programming« 70

DAG Computations
Tasks

The node to start the whole computation
corresponds to the matrix block A00. The
end of the process is formed by the task for
matrix block Ab−1,b−1.
Furthermore, by construction, a path exists
from the start to the final node in the DAG.
The execution of the DAG is initiated by the
final node, with the start node as the first
task to execute.
As before, an additional reference is needed for spawn_and_wait_for_all().
Since this prevents automatic execution of the final node, it is performed
manually, as is the destruction of the task:
tasks[b-1][b-1]->increment_ref_count();
tasks[b-1][b-1]->spawn_and_wait_for_all(∗ tasks[0][0]);
tasks[b-1][b-1]->execute();
task::destroy(∗ tasks[b-1][b-1]);

The parallel speedup for n = 8192 and a block size of 64 is:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

DAG-based: 9.11x 9.94x 72.36x

Kriemann, »Introduction to Parallel Programming« 71

DAG Computations
Tasks

The node to start the whole computation
corresponds to the matrix block A00. The
end of the process is formed by the task for
matrix block Ab−1,b−1.
Furthermore, by construction, a path exists
from the start to the final node in the DAG.
The execution of the DAG is initiated by the
final node, with the start node as the first
task to execute.
As before, an additional reference is needed for spawn_and_wait_for_all().
Since this prevents automatic execution of the final node, it is performed
manually, as is the destruction of the task:
tasks[b-1][b-1]->increment_ref_count();
tasks[b-1][b-1]->spawn_and_wait_for_all(∗ tasks[0][0]);
tasks[b-1][b-1]->execute();
task::destroy(∗ tasks[b-1][b-1]);

The parallel speedup for n = 8192 and a block size of 64 is:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

DAG-based: 9.11x 9.94x 72.36x

Kriemann, »Introduction to Parallel Programming« 71

DAG Computations
Tasks

The node to start the whole computation
corresponds to the matrix block A00. The
end of the process is formed by the task for
matrix block Ab−1,b−1.
Furthermore, by construction, a path exists
from the start to the final node in the DAG.
The execution of the DAG is initiated by the
final node, with the start node as the first
task to execute.
As before, an additional reference is needed for spawn_and_wait_for_all().
Since this prevents automatic execution of the final node, it is performed
manually, as is the destruction of the task:
tasks[b-1][b-1]->increment_ref_count();
tasks[b-1][b-1]->spawn_and_wait_for_all(∗ tasks[0][0]);
tasks[b-1][b-1]->execute();
task::destroy(∗ tasks[b-1][b-1]);

The parallel speedup for n = 8192 and a block size of 64 is:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

DAG-based: 9.11x 9.94x 72.36x

Kriemann, »Introduction to Parallel Programming« 71

DAG Computations
Tasks

The node to start the whole computation
corresponds to the matrix block A00. The
end of the process is formed by the task for
matrix block Ab−1,b−1.
Furthermore, by construction, a path exists
from the start to the final node in the DAG.
The execution of the DAG is initiated by the
final node, with the start node as the first
task to execute.
As before, an additional reference is needed for spawn_and_wait_for_all().
Since this prevents automatic execution of the final node, it is performed
manually, as is the destruction of the task:
tasks[b-1][b-1]->increment_ref_count();
tasks[b-1][b-1]->spawn_and_wait_for_all(∗ tasks[0][0]);
tasks[b-1][b-1]->execute();
task::destroy(∗ tasks[b-1][b-1]);

The parallel speedup for n = 8192 and a block size of 64 is:

Xeon X5650 Xeon E5-2640 XeonPhi 5110P
(24 threads) (24 threads) (240 threads)

DAG-based: 9.11x 9.94x 72.36x
Kriemann, »Introduction to Parallel Programming« 71

Mutual Exclusion

Kriemann, »Introduction to Parallel Programming« 72

Mutual Exclusion
TBB implements various forms of mutexes. The differences between these mutex
classes are based on certain properties mutexes may have:

Scalable: Using a scalable mutex will not result in a worse
performance than sequential execution, e.g. due to high
processor or memory bandwidth usage.

Fair: A fair mutex guarantees, that all threads waiting for the
mutex, will eventually succeed in locking it.

Recursive: A recursive mutex permits a thread, who already holds a
lock on a mutex to lock it again.

Yield or Block: A yielding mutex will only temporarily yield a processor to
other threads, while a blocking mutex will yield the processor
until the lock is aquired.

Remark
Unscalable mutexes may be faster if the lock contention is low. Similarly, fairness
requires more overhead than unfair behaviour. Reactivating a blocking thread also taes
some time. Hence, yielding shoud be preferred if the waiting time for a mutex is short.

Kriemann, »Introduction to Parallel Programming« 73

Mutual Exclusion
In the following table, the different mutex types of TBB with their properties are
shown:

Scalable Fair Recursive Long Wait

mutex OS dep. OS dep. no blocks
recursive_mutex OS dep. OS dep. yes blocks
spin_mutex no no no yields
queuing_mutex yes yes no yields
null_mutex / yes yes never

Both, mutex and recursive_mutex are based on the implementation of
mutexes of the operation system.

All other mutexes are implemented in TBB, i.e. no operating system
functionality is used.

A special case is null_mutex, which can be used as a dummy.

Kriemann, »Introduction to Parallel Programming« 74

Scoped Locking
Mutual Exclusion

Locking and unlocking mutexes manually easily results in program errors, e.g.
due to forgotton mutex release. Also, unlocking mutexes in case of an exception
is tedious and error-prone.

Instead, mutexes should only accessed via scoped locks.

Each mutex type M in TBB has an associated type for a scoped lock:

M::scoped_lock

with the following interface:
class M::scoped_lock {
scoped_lock (); // default constructor without mutex
scoped_lock (M & m); // constructor: lock mutex m
~scoped_lock (); // unlock mutex if previously locked

void acquire (M & m); // lock mutex m
bool try_acquire (M & m); // try to lock mutex m; return true if successful
void release (); // unlock previously locked mutex

};

By definition, unlocking is coupled with the destruction of the scoped lock, and
hence bound to the object lifetime.

Therefore, scoped locks should be auto variables, e.g. not allocated via new.
Kriemann, »Introduction to Parallel Programming« 75

Scoped Locking
Mutual Exclusion

In a typical scenario, the scoped lock is constructed at the beginning of a critical
section and automatically destroyed at its end:
spin_mutex m;
...
{ // critical section
spin_mutex::scoped_lock lock(m); // acquire lock
...

} // release lock automatically
...

or
void f (mydata_t & d, recursive_mutex & m) {
recursive_mutex::scoped_lock lock(m); // acquire lock
...

} // release lock automatically

C++11 Interface
TBB mutexes also support the standard C++11 mutex functions:
void M::lock (); // lock mutex
bool M::try_lock (); // try to lock mutex
void M::unlock (); // unlock mutex

This also allows to use C++11 std::lock_guard together with TBB mutexes.

Kriemann, »Introduction to Parallel Programming« 76

Reader/Writer Locks
Mutual Exclusion

TBB extends mutexes to distinguish between readers and writers with respect to
a critical section. Multiple readers may hold a lock, but only a single writer.

The extension affects only the special mutex classes from TBB, not the OS
related mutexes.

For each TBB mutex, a corresponding Reader/Writer (RW) lock exists:

Scalable Fair Recursive Long Wait

spin_rw_mutex no no no yields
queuing_rw_mutex yes yes no yields
null_rw_mutex / yes yes never

The scoped lock interface is also extended, now accepting a boolean parameter
writer with each mutex, indicating whether the lock shall be a write lock
(true) or a reader lock (false):
class M::scoped_lock {
scoped_lock (M & m, bool writer);
void acquire (M & m, bool writer);
bool try_acquire (M & m, bool writer);

};

Kriemann, »Introduction to Parallel Programming« 77

Reader/Writer Locks
Mutual Exclusion

Reader locks may also be upgraded to writer locks and vice versa:
bool M::scoped_lock::upgrade_to_writer (); // upgrade to write lock
bool M::scoped_lock::downgrade_to_reader (); // downgrade to reader lock

In both cases, either a reader (for upgrade_to_writer()) or a writer lock (for
downgrade_to_reader()) must already be acquired. Otherwise, the effect is
undefined.

When upgrading a reader lock to a writer lock, it will block until the last reader
releases the lock.

Remark
Both functions return false if the lock was released and reacquired, e.g. via
release()/acquire(), and true otherwise.

An example usage of RW locks are read-only and write sections in a program:
{

M::scoped_lock lock(m, false); // acquire reader lock
... // access data read−only
{
lock.upgrade_to_writer();
... // write data
lock.downgrade_to_reader();

}
... // access read−only again

}

Kriemann, »Introduction to Parallel Programming« 78

Containers

Kriemann, »Introduction to Parallel Programming« 79

Containers
Standard C++ or C++11 STL containers are not multi-thread safe if modified.
Hence, access has to be guarded by a mutex, preventing efficient parallel
operations.

TBB on the other hand, implements several containers, which permit concurrent
access, e.g. insertion, deletion, by using either

• a fine-grained locking mechanism, i.e. locking only small parts of the data
structure which are actually changed or

• lock-free mechanisms, where threads notice changes by other threads and
handle the effects of these changes automatically.

The implemented containers fall into the following categories:

dynamic arrays: implementes dynamic resize of an array
associative arrays: a key type is used to access data,

queues: implements first-in first-out data access.

Remark
Concurrent access comes with a cost, i.e. worse sequential performance. Therefore,
concurrent containers should be used, if the advantage of concurrency and the
corresponding speedup outwheighs the additional costs.

Kriemann, »Introduction to Parallel Programming« 80

Dynamic Arrays
Containers

The concurrent version of std::vector in TBB is concurrent_vector .

It supports concurrent growing of the vector, i.e. several threads increase the
size simultaneously.

For this, the following methods are provided:
iterator concurrent_vector::grow_by (size_t delta [, const item_t & t]);
iterator concurrent_vector::grow_to_at_least (size_t n);
iterator concurrent_vector::push_back (const item_t & t);

Here, item_t corresponds to the template argument of concurrent_vector.

The function grow_by() will append delta new default constructed items (or
copies of t) to the array. With grow_to_at_least(), the new array size is at
least n. Finally, push_back() will append t to the end of the vector.

Remark
Consecutive items in a concurrent vector may not neccessarily have a consecutive
address!

Kriemann, »Introduction to Parallel Programming« 81

Dynamic Arrays
Containers

When growing a concurrent array, access to array items is still possible in parallel.
However, new items may not yet have been constructed.

Therefore, when fetching items from an array, further tests are neccessary to
ensure correctness when accessing item i:

• ensure, that the array size is at least i,
• ensure, that the element was constructed.

While the first test is simple, e.g. by using the size() function, to ensure that
an object was constructed, is more involved.

For this, an atomic flag may be used as part of the object class, which is
initialised last during construction. Also the value of the (atomic) element itself
may signal construction, if it differs from some default value, e.g. 0.

The general procedure may look like:
item_t fetch_item (const concurrent_vector< item_t > & v, const size_t i) {

while (v.size() <= i) // test vector size
std::this_thread::yield();

while (! v[i].is_constructed) // test object construction
std::this_thread::yield();

return v[i];
}

Kriemann, »Introduction to Parallel Programming« 82

Associative Arrays
Containers

An associative array, also called hash map, uses a key to access data. For this, a
hash value of the key is computed and used as an index to some internal data
structure (usually an array).

C++11 provides associative arrays as unordered_map and unordered_multimap.
TBB extends these for concurrent access as concurrent_unordered_map and
concurrent_unordered_multimap .

Both container types support concurrent insertion and traversal, but not
concurrent deletion of elements.

The following functions are safe for concurrent access:
bool empty () const;
size_t size () const;

pair<iterator, bool> insert (const value_t & x);
iterator insert (iterator hint, const value_t & x);
void insert (iterator first, iterator last);

iterator find (const key_t & k);
size_t count (const key_t & k) const;
pair<iterator,iterator> equal_range (const key_t & k);

Furthermore, concurrent_unordered_map provides a multi-thread safe index
operator [].

Kriemann, »Introduction to Parallel Programming« 83

Associative Arrays
Containers

Furthermore, safe iteration via begin() and end() is possible. The
corresponding iterators remain valid, even if a new element is inserted.

All of these methods are lock-free, i.e. no user visible mutex is used.

TBB also implements concurrent_hash_map , which furthermore provides
concurrent deletion, albeit with locks. Beside that, the interface is identical to
the above classes.

An important difference affects iteration. It is not safe to use concurrent
methods while iterating over a concurrent_hash_map.

Hashing
Hash values of keys are computed in TBB via the tbb_hash class
class tbb_hash {
size_t operator () (const key_t & k) { return tbb_hasher(k); }

};

For user defined keys, a new function tbb_hasher()

size_t tbb_hasher (const key_t & k);

may be implemented to use the above container classes.
Kriemann, »Introduction to Parallel Programming« 84

Associative Sets
Containers

Similar to associative arrays, C++11 defines associative sets which store elements
accessed by a key value with no particular order, thereby enabling faster access.

Again, TBB extends these with concurrent insertion and traversal as
concurrent_unordered_set and concurrent_unordered_multiset .

The interface is identical with the associative array counterparts, with the
exception of an index operator.

Furthermore, hashing is identical to associative arrays, i.e. via tbb_hasher
function.

Kriemann, »Introduction to Parallel Programming« 85

Queues
Containers

The concurrent version of the C++ queue class in TBB is concurrent_queue .

It provides the basic functionality of a queue: appending items at its end and
removing items from the top of the queue.

However, if multiple threads access a shared queue simultaneously, items at the
top of the queue may no longer be available when trying to remove them.

Therefore, in TBB the pop_front() function is enhanced by a test for an item
available. The resulting function is try_pop() :

C++ Sequential Access

std::queue< int > q;
...
while (! q.empty()) {
int i = q.pop_front();
...

}

Parallel Access

concurrent_queue< int > q;
...
int i;
while (q.try_pop(i)) {
...

}

The return value of try_pop() is true, if an item was available, which is
assigned to the function argument.

The counterpart of try_pop() is push() , which is equivalent to push_back()
from std::queue.

Kriemann, »Introduction to Parallel Programming« 86

Queues
Containers

Beside push() and try_pop(), concurrent_queue also has several functions
equivalent to std::queue functions. But since these functions are not safe in a
multi-threaded environment, they are prefixed with unsafe :
size_t concurrent_queue::unsafe_size () const;
iterator concurrent_queue::unsafe_begin ();
iterator concurrent_queue::unsafe_end ();

While concurrent_queue will handle arbitrary many items, TBB also
implements a bounded queue: concurrent_bounded_queue . Here, a maximal
capacity may be specified, which is unlimited by default:
size_t concurrent_bounded_queue::capacity () const;
void concurrent_bounded_queue::set_capacity (size_t capacity);

As a consequence, pushing items to the queue via push() may block until there
is enough capacity to insert the new item. With try_push() , the push
operation is skipped if it would exceed the queue capacity.

Furthermore, concurrent_bounded_queue implements a blocking pop()
function, i.e. it will wait until the queue is non-empty. However, the function
try_pop() is also available.

To wake up any thread waiting in push() or pop(), the abort() function can
be used.

Kriemann, »Introduction to Parallel Programming« 87

Queues
Containers

An Argument Against Queues
Since queues provide a FIFO access to data, insertion and removal has to follow
a strict sequential order.

Remark
Due to concurrent insertion or removal, TBB only guarantees that if a single thread
inserts two items and if another threads removes them, the order is preserved.

This sequential order may pose a bottleneck of many items are manages by a
queue in short time.
Furthermore, due to the FIFO order, the time between data insertion and
removal may be long, such that the data may have been removed from the local
cache or, a remote thread may have pop’ed the data.
Therefore, it is suggested to use other functions instead of queues, e.g.
parallel_do (with local insertion) or pipelines. Here, cache and thread locality
is preserved.

Kriemann, »Introduction to Parallel Programming« 88

Miscellanea

Kriemann, »Introduction to Parallel Programming« 89

Miscellanea
TBB implementes various other algorithms, some of which are now available in
C++11, e.g. atomics or timing.

Others are abbreviations of more general algorithms, e.g. parallel_invoke(),
or implement standard algorithms, e.g. parallel_sort().

TBB also provides a special memory allocator, which is more efficient than the
default malloc() implementation in multi-threaded programs.

Finally, TBB handles C++ exceptions in a special way, simplifying error
management.

Kriemann, »Introduction to Parallel Programming« 90

Sorting
Misc. Algorithms

TBB provides a parallel sort algorithm parallel_sort which is based on quick
sort:

template < typename iterator >
void parallel_sort (iterator begin, iterator end);

Only random access iterators are supported in parallel_sort, e.g. for standard
C arrays or std::vector but not for std::list:
std::vector< double > x_vector(n);
std::list< double > x_list(n);
...
parallel_sort(x_vector.begin(), x_vector.end());
parallel_sort(x_list.begin(), x_list.end()); // error

The type item_t of the elements to sort has to provide a swap function:
void swap (item_t & i1, item_t & i2);

Remark
The quick sort implementation of parallel_sort is unstable as it may change the
order of identical elements, but deterministic as it will always compute the same order
for the same input set.

Kriemann, »Introduction to Parallel Programming« 91

Sorting
Misc. Algorithms

By default, parallel_sort uses std::less to compare elements. For user
defined types or if a special ordering should be used, a third argument may be
provided to parallel_sort:
template < typename iterator, typename compare_t >
void parallel_sort (iterator begin, iterator end,

const compare_t & compare);

Here, compare_t has to provide:
bool compare_t::operator () (const item_t & x, const item_t & y);

which should return true iff x < y, where < is meant with respect to the
corresponding ordering relation.

The speedup of parallel_sort
depends on the number of elements as
can be seen in the right diagram. But
even for large sets, the speedup is not
optimal (but increasing).

102 103 104 105 106 107 108

#coefficients

2

4

6

8

10

12

S
pe

ed
up

XeonPhi 5110
E5-2640
X5650

Kriemann, »Introduction to Parallel Programming« 92

Sorting
Misc. Algorithms

By default, parallel_sort uses std::less to compare elements. For user
defined types or if a special ordering should be used, a third argument may be
provided to parallel_sort:
template < typename iterator, typename compare_t >
void parallel_sort (iterator begin, iterator end,

const compare_t & compare);

Here, compare_t has to provide:
bool compare_t::operator () (const item_t & x, const item_t & y);

which should return true iff x < y, where < is meant with respect to the
corresponding ordering relation.

The speedup of parallel_sort
depends on the number of elements as
can be seen in the right diagram. But
even for large sets, the speedup is not
optimal (but increasing).

102 103 104 105 106 107 108

#coefficients

2

4

6

8

10

12

S
pe

ed
up

XeonPhi 5110
E5-2640
X5650

Kriemann, »Introduction to Parallel Programming« 92

Parallel Functions
Misc. Algorithms

Having function objects func0_t,. . .,func9_t implementing
void func0_t::operator () ();
void func1_t::operator () ();
...
void func9_t::operator () ();

parallel execution of all functions can be accomplished by using the
parallel_invoke algorithm:

template < typename func0_t,
typename func1_t,
...,
typename func9_t>

void parallel_invoke (const func0_t & f0,
const func1_t & f1,
...,
const func9_t & f9);

The return values of all function objects is ignored and should default to void.

Remark
The parallel_invoke algorithm is implemented for two up to ten functions.

Kriemann, »Introduction to Parallel Programming« 93

Parallel Functions
Misc. Algorithms

All functions are called by parallel_invoke without arguments. To execute
functions with arguments in parallel, beside functors, lambda functions can be
employed:
void f (int);
void g (double);

parallel_invoke([] { f(1); },
[] { g(2.1); });

This way, also multiple return values can be implemented:
int f (int);
double g (double);
float h (float);

int i;
double d;
float f;

parallel_invoke([&i] { i = f(...); },
[&d] { d = g(...); },
[&f] { f = h(...); });

Kriemann, »Introduction to Parallel Programming« 94

Parallel Functions
Misc. Algorithms

Recursive execution of parallel_invoke is also possible:
void traverse_tree (node_t & node) {
if (! node.is_leaf()) {

parallel_invoke([&node] { traverse_tree(node.left); },
[&node] { traverse_tree(node.right); },

}

handle(node);
}

Kriemann, »Introduction to Parallel Programming« 95

Exceptions
Miscellanea

For exceptions thrown within TBB algorithms or tasks, the following handling is
implemented:

1 the exception is captured and all further exception with in the task group
are ignored,

2 the task group is cancelled,
3 after the current algorithm has finished, the exception is rethrown by the
thread which has executed the algorithm.

In order to rethrow the original exception in step 3, the program has to be
compiled with C++11 support. Otherwise, the exception is of type
captured_exception .

Assuming C++11, this enables error handling as for sequential programming:
void main () {
...
try {

parallel_for (...);
}
catch (my_exception & e) {

...
}

}

Kriemann, »Introduction to Parallel Programming« 96

Memory Allocation
Miscellanea

TBB comes with an extra library “tbbmalloc”, implementing optimised versions
of malloc() and free(). The optimisations have a special focus for
multi-threaded applications are concern

• scalability and
• false sharing.

To use it in applications, just add the library during linking:
> icpc -tbb -o myprog -c myprog .cc -ltbbmalloc

Furthermore, TBB implements several allocators following the C++ allocator
requirements:

tbb_allocator: uses the TBB versions of malloc() and
free(),

scalable_allocator: allocating and freeing memory scales with the
number of processors,

cache_aligned_allocator: allocate memory at cache line boundaries,
preventing false sharing,

zero_allocator: wrapper for other allocators, ensuring that the
memory is zeroed after allocation.

Kriemann, »Introduction to Parallel Programming« 97

Literature

“Intel OpenCourseWare: Threading Building Blocks”. http://intel-software-academic-program.com/courses/.

“Intel Threading Building Blocks Documentation”.
http://software.intel.com/sites/products/documentation/doclib/tbb_sa/help/index.htm.

“Lambda functions”. http://en.cppreference.com/w/cpp/language/lambda.

“Threading Building Blocks”. http://threadingbuildingblocks.org/.

Kriemann, »Introduction to Parallel Programming« 98

	Introduction
	Lambda Functions
	Loops
	Task Groups
	Tasks
	Mutual Exclusion
	Containers
	Miscellanea
	Appendix
	Literature

